COMMON_DATABASE INTERFACE FOR HETEROGENEOUS SOF THARE 173
ENGINEERING TOOLS(U) RIR FORCE INST OF TECH
WRIGHT-PATTERSON RFB OH L OF ENGINEERING
UNCLASSIFIED T D CONNALLY DEC 87 RFIT/GCS/ENG/B?D 8 F/6 12/5

I . -

N
=]
N
O

L2

==

s i
Mo
N

TTEEEREE

rr
’
L
[-
b
iz
N
o

3 [l
3 = e

25 lie e

h MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.

-

) o 9 o .
::".'.'f(."l.:;"‘ "2 — ;: ey "' t‘-"'.

n.

o' i'; s‘. t‘ '0 ALY

$:t'. () oh‘ U
. . . '."
R SR
TR WU 0N . .""n'

AD-A189 628

COMMON DATABASE INTERFACE
FOR HETEROGENEOUS SOFTWARE
ENGINEERING TOOLS

THESIS

Ted D. Connally
Captain, USAF

AFIT/GCS/ENG/87D-8

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STA' A
Approved for public release;
Distribution Unlimited

88 3 01

; OG0 AOGOO080 QOGO
t MR ‘5131520'.50??,!"3.“"'. v .?"Ofgbl:;’ltnl__g‘l?q.l!.aI!_’ U]

s

UMCLASSIFIED
RITY CLASSIFICATION OF TR13 PAGE

[

REPORT DOCUMENTATION PAGE B 0188
REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
23. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION 7/ AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE ﬁgg;g:ggtfg; 5:?:;$t23‘!ease;
1. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING QRGANIZATION REPORT NUMBER(S)

AF1T/GCS/ENG/870-8
5a. NAME OF PERFORMING ORGANIZATION 6b. ?I;F;Cil?c:mE?L 7a. NAME OF MONITORING ORGANIZATION

School of Engineering AFIT/ENG

¢. ADURESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

air Force Institute of Technology (AU)
¥ Wright-Patterson AFB, Ohio 45433-6583

T2, NAME OF FUNDING / SPONSORING 85, OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
0sb/SpIo S/BM
= ADDRESS (Gty, State, and ZIP Code) 70, SOURCE OF FUNDING NUMBERS 1
; _ PROGRAM PROJECT TASK WORK UNIT
Pentagon, Wasi DC 20301-7100 ELEMENT NO. JNO. NO ACCESSION NO.

TITLE (Include Security Classification)
COMMON DATABASE INTERFACE FOR HETEREOGENOUS SOFTWARE ENGINEERING TOOLS (UNCLASSIFIED)

. PERSONAL AUTHOR(S)

Ted D. Connally, B.S., Capt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
MS Thesis FROM T0 1987 December 230

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
IFIZELD GROUP 5UB-GROUP Database Management Systems;Programming(Computers);
U5 Computer Files;Information Transfer;Interfaces;.ik
19. ABSTRACT (Continue on reverse if necessary and identify by block number) ~

Thesis Chairman: Dr. Thomas C. Hartrum
Associate Professor of Computer Engeineering

. . 1AW AFR X»\/'

Ol)

4 Protesstonat De¥

- p.a;_;:*"—::‘:": 3”1:;_-,nglodY !
Wrightpaieson 3 OB
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
XA uncrassipeunumited [SAME As RPT. [J OTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIOUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Dr. Thomas C. Hartrum (513) 255-3576 AFIT/ENG
'D Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

K ~ ; IS0 gt s g VgtV OO ORI O O
.) (NG d AN (AR y DO U OO DO OO U O AN
.:‘*.151.:1.‘.: < .." 7 '1‘._.2-.‘.&5 “.‘la‘.},‘if,;‘l“:'.‘.'.\.',s“_,‘l._ E".%“_\b':‘!,“\i”\‘",O",b"‘,‘n.‘,v"l-ﬁ.g",’o’,,l',‘t‘, ABAORONCIAN Cfg‘l!"i'"l'g't AW IOBOUSC Y NOD OO

‘\\gig <
' The project involved the design and implementation of a common

database interface to integrate a set of heterogeneous software

engineering tools. These tools are implemented on a variety

of computer workstations, use incompatible data files, and provide

Tittle or no database support. The lack of database support

and data sharing prevented having an integrated software design

environment.

The emphasis of this research was placed on implementing
a fully functional database interface which integrated the
existing tools and supports the addition of new tools as they
become available. The approach selected to implement the interface
was the use of a standard data file and a data manager. The
standard data file supports all data transfer and the data
manager provides all database transaction support.

- The unique aspects of the interface is the ability of the
standard data file to support multiple tools and the data manager's
use of a generic data definition table. The standard data file
design addresses the issue of providing A_flexible file format
which can be modified to support different tools. The use of

the data definition table is the key mechanism which allows the
data manager to manipulate the data files from various tools.

The data definition table describes the contents of the file and
supports the data manager in performjng database updates and
retrievals.

The interface was fully img}emented and successfully
integrated the existing tools. A tool, developed in a separate
research effort, was also successfully integrated with the other
tools which demonstrated the/interface's ability to incorporate
new tools.

¢

X LWy

AFIT/GCS/ENG/87D-8

g
S L

--_a,w
SR

- -
=
e’
-
-
"

o COMMON DATABASE INTERFACE
';- FOR HETEROGENEOUS SOFTWARE
Q? ENGINEERING TOOLS

9'6

3

W THESIS

pyo Ted D. Connally
Captain, USAF

R AFIT/GCS/ENG/87D-8

Approved for public release; distribution unlimited

i DTIC

r— L~

oy & . MAR 021988
s D
e H

. P Ay

‘ X) JIM MR AT R ORI 7 i ' ARAN AN ST
XA b l‘:‘l':‘»"f'\"‘a"-'.",':‘t‘..ﬂ.lii D M e M o‘rf«'?ol.‘i’o"ﬂf" EM O IO f"?"‘wh‘Jv.l"if“w{"-?\,‘i.“!ue"-‘l‘: e

AFIT/GCS/ENG/87D-8

M L AL

COMMON DATABASE INTERFACE FOR

H HETEROGENEOUS SOFTWARE ENGINEERING TOOLS

}
)
;
: THESIS
3
_I
)
4
!

Presented to the Faculty of the School of Engineering
of the Air Force Inatitute of Technology

Air University

In Partial Fulfillment of the
Requirements for the Degree of

o Master of Science in Information Systems

- o » e .

Ted D. Connally, B.S.

, w_am_m o o SN

Captain, USAF

) December 1987

Approved for public release; distribution unlimited

-

v NI . [\ A0 HOGUDCK thed OO0 HhY
"0’“::*'0"';?&‘0;l‘nft‘ 'l'd,"‘t:‘," "o“'h“’ ‘ "‘:("1 AT .‘G': “ " ." "' .“ ." .‘. ". " " ¢ ‘0 't-l"'t‘.‘ 4 '| '. 0! "‘ D "' ..' %' " ". "" '.'.‘ ‘.' .' S5

=

b B

Preface
R a5
v This report documents my efforts to design and imple-
g ment a database interface which integrates the software
< engineering tools available within the Air Force Institute
v of Technology’s Software Engineering Laboratory (SEL). My
£ goal for this thesis was to implement a fully functional
jg interface which not only integrated the existing tools but
{t allows for future tools to be incorporated into the SEL
’E environment.
The interface was successfully implemented using a
t’ standard data file to transfer data between the tools and a
& data manager which performs all database transactions.
? Hopefully, the implementation of this interface will support
:; 6?: and encourage the development of new software engineering
; tools for use within the SEL.
P I wish to express my sincere appreciation to Dr. Thomas

K C. Hartrum, my thesis advisor, for all his assistance and

guidance throughout this effort. I also wish to thank my

fd
jf bt By &

committee members, Capt Mark Roth and Capt James W. Howatt,

e
' for their contributions to this thesis. I would also like
d
‘é to recognize Capt Steven E. Johnson for his contributions in
g ‘
o belping me test the database interface using the SADT tool sn For
e "AkI o
| he developed. . S
: zed g
b < ation
} Ted D. Connally

R
» J»‘F?: . Listribution/ _
SR Availnbility Codel
; ii - ‘Avsil nra/or

b Wist 1 Special

c o\
; SR

» L. W

’ o - = . X T [Nt DL 1S \ 08 Vo e
LN r'.ﬁ_.'l,.’nf.ﬁf,h:. n!,'.,.‘»‘.'x,.’t,o .0 AR B OIS MO HANR “’l‘.‘lt. batheae? .\'\tg‘l!["@ 0’ 0 KN DA PR R A‘!‘o.a"‘m‘;h .

t o . N . N - i L2k ol ot T TN T T TN TR

#ﬁ ﬁBS Table of Contents

iw Page
Preface (...t ieiiietieentetrtenreerstetecstcoatsnonsss ii
W LisSt Of FifUIreS ...t eereseetoecccccoonccencsonsonosnns vi
Ny AbStract ... ccccictietcrrttitrsenssenssssssscssanssces Vii

"‘ Io Introd“ction ® 9 6 06 85 0 0 0 00 0 EPOSEE N SE O NES N0 N et

[T

’ Backgroundc.ciccvcsvccnssssscccccascacs
‘ Problem ...cccociencccssesascscssnssssacanns
X SCOPE e cvseovatcecesssenanssssssssasocsne
- ASSumptionsccccect0000s0s000000000as

7 Approach and Presentationcc00000040

N OB W

6 II. Review of AFIT Environment and Literature

8
ék‘ Introductionccccecvcctccccccccancnns 8
‘&‘ System 690 Configurationccccc000000 8
s Database Functionsecc000000000000. 14
0 i Software Engineering Environments 14
o 61!." Data Manager Functions 19
W Tool Integrationcccccceececcnscnscs 22
SUBRBMArY .cccccccccocccscsccsnsccosnscnrsnsocnsoas 25

S IITI. Requirements AnalysSis ...ccceceeccccsasccnncsasas 27

‘\$

D) Introductionceieieccciacctttetcnnnns 27
e OVervVieW ... ccieerevevocessensersanscace 29
,: Standard Data File ..ccccetencoccscocs 31
‘s Data Formatccc0vvecencens 32

Y File Description ceessee 36
’.} Data Manager S 6 0 6 6 6 6 5 0 8 & 8 8 0 B O 0 8 0 s PP R e 0 s e e 40
Tool/User Interface ceesanse 40

;xy Data Retrievalcccevevetacncnscs 45
I~ Database Updatec.cocovevencccnnaans 48
o Common Databaseccoceveeecsnncncans 50
e SUBBALY +:ccctterscacassossocssssscscossassas 50

, IV. System DesSignttt teessssssrscccososcesasns 52

el

R Introductioncecicccncerretttatacnns 52
‘ Systeﬂ Structure @ B 8 8 & ¢ 0 6 6 06 0 9 ¢ & 0 0 0 9 S s 0V e 52
» Data Managercccococ0c0eescasacasacs 52

‘ Standard Data File ® & ® 6 0 8 & & & ¢ 5 & & 0 & s 0 56
Common Databasecccececccessntosacs 56

il
-
.
»

.
o
.
P
P

iii

TR 3% e) e AN W L ¥ - N [P SN WP NS TRl e % 0 ™ 1% e () X "y " OOV |I. (
8,0 *l’._.l. ll.» ¢ ' .,I (0 3 v,. Ao 4%, .‘l Wy e LN LA LM% L1 o, (Lo M) » '. 'r %0 Mg 40 LA '.‘l'v*l ¥ 't‘.'l.l.j‘..q.l A "4"‘.‘.‘\ W't -.l’=‘l'-'|'~'.'-."!‘“~‘
»

ot"l
:':"n
v.;l
i
‘: . Transaction ProcesSsingc.ccccescccccces 56
iy ;32 Retrievalccccvveccecrntcscancnas 56
b L New WPite@ .v.veeeeeeecesccoccocsssaneaee 57
Se88iOoN ..ccrececcssrsoncrssnseasenecs 57
;?{ SUBBATLY .cseecscsccccsssccascsosasossnanses 58
4" . .
R V. Detailed DesSignvcecivecrrocrccocsccnsncsns 59
4.
¢
RO INtroduction ...cceccceccccccrcccrcctancas 59
) Standard Data Fileceveeeeceeeseeeses 59
as, File Description Header¢ccccee 59
A0 Session Identification 60
Q*: Tool Identificationc.ccoceeae 61
"y Phase Indicatorcccccecoces 61
o~ Type Indicatorcceceecesccccss 62
oy Start/Stop Timesccc00.0 62
X ﬁ Data Entity SummABTY ..¢ccovccecens 62
ey Data File Entriescececevcecccccss 63
o Data NaBEecccccccccnscacsccnce 64
b Field Lengthceveeeveeenees. 64
b Multi-line Indicatorc.ccsc000c0 65
r Number of Fields Indicator 65
rﬁ Direction and Type Indicators 65
,:j Data Contentsccccceevccsccconcs 65
R BEntity Structure ...ccccvccecoccses 65
0 Data File Structureccccceeceococecs 66
‘] {. Data Managercccccccocccsocscesoncoccs 66
o i Tool Data Definition Table 68
P Table USBZE ccveecevccnsacscssosscs 68
gt Table Formatccceesvcvconsnnnce 68
2& Element Entry Orderccccecoece 72
e Tool Description Tableccc00c000 72
D) Tool/User Interfacecccceceacascnce 73
Y Tool Data Requestcccveevecn 73
[t Interface Designcc00ce0ecens 75
B> Results Reportingcccceeveeee 76
L@\ Data Manager Retrieval Function 76
o Request Validation000.. 76
] Session Controlcciceeccccnns 81
"g Session Entity Table 81
? Session Identification Table .. 82
Qﬁ Data Identification 83
il Data Retrievaliccececaccas 84
Standard Data File Build 84
'W: Data Manager Update Function 85
" Request Validation 85
W Database Updateco0c0eses 87
\h Common Databasecccvoceectssscsccsscscncs 89
W SUMMATLY +:coecessosscceasoanssssssasasnssns 90
" ‘ﬁ.\.
SO
A
age
> iv
e
o
\

e Y Y T Y 0 e 5 S SRS A
. :(a 2 8% .‘i.‘ 4% T 0 \,"b-‘ 4, 4.0 \. LA (NAREANN ..l‘_.x"‘!...l. L 4'\.,'3‘30. l‘-'u‘-" P

VI. Implementation, Test, and Evaluationc.cc.. 91

Introductionc.ccceccccccsancs
Implementationcccccvsnvotccss
Environmentccc00c0000000
Interfaceccccecececcecs

cesseas 91
91
cecenae 91
essanns 92

EBrror Handlingccccecveeocsncccces 94
TESE ceeceesocssssessssssanscssssnsassssoscs 96
Evaluation ...cecececcecccecsccasvsensocnncas 98

New Tool Integrationcccceceececces 99

Existing Tool Integrationc.ccc004 99

Performancecccecvecesecaccsccssscse 100

Resultsictecenscesccsccasaces 101

Su“ary ® ® & ¢ 8 0 0 0 6 & & 8 O 8 0 08 S S 0B O 00 000 L e 0o 103
VII. Conclusion and Recommendationsccccocccoces 105

CODCIUSiOnS ® 8 5 06 9 06 0 060 99 S0 09BN eN SN L Ee NS 105
Reccnendations ® © 0. 0006 06008008 066680 060509000000 107

Appendix A: Data Dictionary Database Relations and
Data Dictionary Descriptions 109

Appendix B: Standard Data File Format ...c.c¢vccceeec. 124

Appendix C: Data Manager Database
Relation Definitionsccc0000000es. 132

Appendix D: User’s Manual for the
SEL Datananager ® & ¢ & 5 0 & O P O O P G E S O S e N s e 146

Appendix E: Tool Designer’s Guidec.cc0000000000s. 167
Appendix F: System Configuration Guide¢c¢:¢¢.... 184
Appendix G: Summary Paper ...cccesccesccaccccscssces 193
Bibliography ...cceesecesscsecot.sscssneansoscssnssones 217

Vita LR A B A I R N B R Y B R I B K B I Y I N Y B I S I B Y I Y B I I I I Y S B Y IR I I B) 219

The following additional thesis volumes are maintained at the
Air Force Institute of Technology, Department of Electrical
and Computer Engineering.

Point of Contact: Dr. Thomas C. Hartrum

Volume II: Data Manager Code

Volume III: Data Dictionary/Data Manager File
Translator Code

Ll

P2

List of Figures

Figure Page
1. Current Software Engineering Configuration ... 2
2. Sample Data Entity Entry in Design Phase 10
3. Database Schema for a Data Entity Within

the Design Phaseccccecececccosccccsccsns 12
4. Sample SADT Diagram ..cccoccesvocsccsssssssnans 13
5. Current System 690 Configuration¢cce.000 15
6. Goal System Configurationcccceesescccas 28
7. Data Manager SADT Top Level¢ccccccevces 29
8. Data Manager SADT First Levelc.cc.... 30
9. Process Data Dictionary BEntryccccececeeces 34

10. Process Database Relationscc.cccecececses 35

11. Batch Data Manager Interfacecececcecces 41

12. Interactive Data Manager Interface 41

13. Overall System Structure ..cccececcecsccsoneaes 53

14. File Description Header Format 60

15. Data Element Record Formatcccecceccccs 64

16. Standard Data File Formatccececeecoee 67

17. Tool Data Definition Tablecccccecevecns 69

18. Tool Description Tablecccceveecccosccass 73

19. Tool Data Request Formatcccevceececes. 74

20. Multi-Level Transaction Table 78

21. Session Entity Table ...ccccotecccccscccoasasnse 81

22. Session Identification Table 82

23. Software Testing Steps ...ccceeecetnacnrenans 97

24. Data Manager ASC Performance Results 102

vi

b
®

‘V'_\/

R anddi cah o sdth bl S it e dhil st

AFIT/GCS/ENG/87D~-8

Abstract

The project involved the design and implementation of a
common database interface to integrate a set of heterogene-
ous software engineering tools. These tools are implemented
on a variety of computer workstations, use incompatible data
files, and provide little or no database support. This lack
of database support and data sharing prevented having an
integrated software design environment.

The emphasis of this research was placed on implement-
ing a fully functional database interface which integrated
the existing tools and, most importantly, supports the
addition of new tools as they become available. The
approach selected to implement the interface was the use of
a standard data file and a data manager. The standard data
file supports all data transfer and the data manager
provides all database transaction support.

The unique aspects of the interface is the ability of
the standard data file to support multiple tools and the
data manager’s use of a generic data definition table. The
standard data file design addresses the issue of providing a
flexible file format which can be modified to support
different tools. The use of the data definition table is
the key mechanism which allows the data manager to manipu-
late the data files from variocus tools. The data definition

vii

VW ATAS

R O

- table describes the contents of the file and supports the

SEE
L
s

o N data manager in performing database updates and retrievals.

1‘ The interface was fully implemented and successfully
E: integrated the existing tools. A tool, developed in a

! separate research effort, was also successfully integrated
with the other tools which demonstrated the interface’s

O'

q "

[\

s .y .

oS ability to incorporate new tools.
A

5

14

I viii

" a T "

" . - ;- 0 - h 14 r rlyy.- - - - ~ - o, -, -(-fﬁ '\‘n “ ‘ "‘; ..) . T
h DY) D 4, , ¢ \)) O Pt
KN ,’a‘l‘,“c"‘:'.'c"'a..“ L »‘?'z"'l‘?'l"'l !‘n.-'a..'\ !'l‘t (L) .!.l.!'l G0 !'o_‘-'l‘ N "" it ’y QQ.Q.o Y ,t'l.““ 1500 h _\"‘Q‘._!‘. l'l,:‘l LIPS

w0y a0

-
Tl w

P i TN

- o o S

"o o) r ALOURTEF Ueh Mok . QCHONONOOLAUTN0 GO0
I T KA 2 PO e K i 00 ¢ (IR U KOO K IO MO MO K WSO N M

COMMON DATABASE INTERFACE FOR
HETEROGENEOUS SOFTWARE ENGINEERING TOOLS

I. Introduction

Background

Within the Air Force Institute of Technology (AFIT), an
on-going effort exists to develop software design tools to
support a software designer through the phases of the
software development life cycle. As part of this effort, a
series of theses (4, 16, 17) have produced a set of software
engineering tools to form System 630. System 690 provides a
design environment for use within the AFIT Software Engi-
neering Laboratory (SEL). The tools run on separate
workstations, and are connected via a local area network and
modems to a mainframe computer which supports a relational
database management system (3ee Fig. 1).

The primary tool within System 690 is a data dictionary
editor (4) which supports the Requirements, Design, and
Implementation phases of the software development life
cycle. This editor currently runs on Zenith Z-100 work-
stations and provides the designer a screen-oriented data
dictionary editor. A Structured Analysis and Design
Technique (SADT, trademark of SofTech, Inc.) Editor (17) is
also available which runs on a Sun-3 workstation. This tool
provides an interactive graphics editor for SADT diagrams.

1

PAAURIEY” 3¢S,) 000

W th W0 (Q
u'!‘."»'u'r. ﬁ"‘.".‘:h ﬁ'g‘e'. 0‘09.9".«

3 N | N i aim as 3 L sl e YN - e o A At ab ab ad Al ok _ah aal oal tal Ll ol
e

P SUN
W WORKSTATIONS

Z-100
W WORKSTATIONS

)
Al GANDALF VAX
_. SWITCH

SEL
MICROCOMPUTERS

11/785

e ;-‘
"."r.’f

.4,
ARAh

1

TERMINALS INGRES
DATABASE

ITS e R
-

%

%)

-
-

HOME

DIAL-UP

MICROCOMPUTERS

LR

N .- e
-

L]
r",- '.D"-“.-’ > U

®.x

<

MK

o A

- -
o208

¥

s

Figure 1. Current Software Engineering Configuration

7. The goal of System 690 is to provide an integrated

system in which a designer could sit down at a workstation,

b

ol download the necessary data from a central database, work on

z
5

W) V‘N
) Sl

Ly T
L}

k(> ~ .
% 0 Q 4, U5 i
”““ﬂ’ﬁfHWUW @Mu;.Mhm'“M%ﬂMWNHMMN”MWW‘5&%%hmwwnﬁﬂimMM%

a portion of the design, and when finished, upload the

modified data back to the database. This data, when stored

"!

‘\h in a comprehensive, centralized database, would provide a

;kg system which could share data between tools and provide the

"

?ﬂ means to document a software project throughout its entire

R

%ﬁ‘ life cycle.

ale

%ﬁ However, a data incompatibility problem exists. The

L

’ current tools each use a different format for their data

9“.

:} files and only a few of the tools interface with the

+S4,]

ool

<. database management system. This data incompatibility

KK

@ problem is being compounded as new tools, using other file

N

3&3 formats, are added to System 680. The inability of current

o2

b? and future tools to store and share data prevents having an

X

T“ {9 integrated software development environment within the SEL.
Solving the data incompatibility problem would provide two

[A

éf major benefits: an integrated system for use by AFIT

%% students and faculty and a design methodology which could be

e

%: applied to similar problems in other software development

[}

ﬁA organizations.

9

N J ’.‘

1? PROBLEM

o,

%%» The main problem existing in System 690 is the inabil-

i)

o ity of the separate tools to use a common database and to

o

_33 share data. Implementing a data manager which provides a

Yy

.3 common interface between the different tools and a central

vabes

S . database was the thrust of this effort. The data manager

AT 'W‘

R v

::'kl

)

s 3

®.

"l

0

ot

o 1 . ; - - -« v ¥ W, % H
W0 1 oai b e DA - At W, - s, e A NV el .
R e R R DRt R e A P A

o had to be adaptable so that it could incorporate changes to

PR

. existing tools and support the addition of new tools.

QE.

o Scope

(X

:&. The thesis effort covered two specific areas:

)

}‘ 1) Analysis of the existing tools and database to
\‘

B design a standard data file format enabling
t both current and future tools to share a

:ﬁ common database.

o 2) Based on this analysis, the design and

g? %nple-entation of a data manager providing an

o interface between the tools and the common

ik database.

e The design of the standard data file format and the

%& development of a working data manager were the primary areas
% ' of emphasis. The ability to add new tools to the system was
;f. é%f the main design consideration, with the development of a

gg - working data manager which integrates the current System 690
'§§ tools being the primary objective.

%? The computer resources available within the SEL

&? dictated the configuration used to implement the data

Eﬁ manager, central database, and standard data file. The data
zr‘ manager was implemented on a VAX 11/785 computer, using the

si Berkeley 4.3 Unix operating system. The central database

‘ was developed using the Ingres relational DBMS. The use of

. Ingres required that the data manager be developed using the
?ﬁ. "C" programming language because "C" is the only language
i?) available on the VAX system which supported embedded queries
§ =~ with the database. The queries were performed using the
RS

o Embedded Query Language (EQUEL) provided with Ingres. The
L)

\ 4

' y ‘ DO e G TR Vst iyt e 0 1 W (R AT 1T 7 e T 9 T T R N,
-l‘n"‘.:?".""h‘, R QOO XM X o A X !‘a".“':'t'."n‘,Nf.':'.'.‘:'c‘.‘o "t'o".o'h 4ty '.'..n'.':'.‘|'..n'..Q.?.c'?'l‘?.o". o",‘l'.“'.‘t‘.'t'.'t':‘i'. NG

s A

“n %

g isi standard data file had to be in a format which was com-
o B,

. patible with the Unix and MS-DOS operating systems. This is

B ¥
L to support the transfer of the standard data file between
W
? the System 69C tools and the data manager.
!
3 Assumptions
:‘ Two assumptions were made in the development of the
iy {
:t data manager. The first assumption was in determining the
_g primary communication interface to support between the tools
W
ﬁ and the data manager. Because the data manager resides on a
A
; central computer and the bulk of the tools reside on
? individual workstations, the communication interface focuses
B! on supporting remote accesses, either modem or local area
* if% network. The second assumption was that a System 680 tool
W
? designer either has a sufficient database background to
K
5 identify the contents to use in the data manager control
Y
* relations or can obtain the necessary assistance to identify
o3 thenm.
"
-y
5 Approach and Presentation
[
a The thesis effort was carried out in the following
L™
N
Ep phases:
2
& Phase 1 -- Reviewed the existing System 690
'. configuration and current literature
: to determine system requirements.
48]
R Phase 2 -- Requirements analysis of the standard
‘o data file format and data manacer.
o Phase 3 -- Design of the standard data file
" fg5 format and data manager.
-
".
Q.'
o 5
L
\

;A

& MR Pp P ” o " - r o, : ! 0 W 0% 0 0T T TN » X3
DO R o TR L A LA O A O AR R A Kb) RN DT IO DATEDON K0 ¥ e 2L S ON

w

‘ﬁ e, Phase 4 -- Development and implementation of the
SR standard data file format and data
R manager.

w Phase 5 -- Measurement of data manager perfor-
‘V mance,

"‘ (]

Ié Chapter 1II contains the review of the current system

v) P

&. configuration and literature. The review examined the

ﬁ current System 690, the database functions other systems

'

:: identified as important, and techniques used to integrate

[4

N heterogeneous tools. The System 690 review concentrated on
0

:' the features, capabilities, and requirements of its tools.
1)

L ‘

", Other integrated environments were reviewed to identify the
" database function requirements necessary to provide a socund
A

fd environment. Finally, the methods used by other systems to
-ﬂ’ efh integrate stand-alone tools were examined.

’ @

i§ The requirements analysis is in Chapter III. The

b

%R analysis established the requirements for the data manager
K,

)

o and the standard data file. The most important requirement
P established was the need to be able to build the standard

W

;‘ data file using a "generic" means to describe the standard
K

; data file’s contents for each of the tools. The data

ot

:: description needs to support both updates and retrievals to
P\

:. reduce maintenance overhead and prevent possible errors

)

#

® arising from having the same basic data maintained in two
i
ﬁt places.
%

Y Based on the requirements analysis, the standard data
el

k)

o - file and data manager were designed. The design analysis
SRS

5 v consisted of both a system design and a detailed design.

)

W

- 6

[}

®

‘ ..

™

L%

W 3,

- a5 W " 2 RN g in [1IN DRI ‘.~.'] X WO) A SO
R AP ORTAR o s "‘:ﬁ':“ LA AL . Fign " N Jl‘."'.'u‘!"-'l.:'l.t q‘t’.-‘t’u'l..f‘ R .o":n"~!".l".!".l.'..:"'! '-"‘.0":"."'.“‘-"‘.0. Wt e, c'?'v‘

1,
':'!'n
4
fq e The system design in Chapter IV presents the system design
W ™ (_j.:.

-~ RS
: selected for the data manager, standard data file, and their
e
$? configuration. The detailed design of the standard data
)
4,
Ih; file, data manager, and its components are in Chapter V.
N
}) The design concentrated on providing a system which can
IO
:fg easily incorporate new tool data file formats as the new
)
mf tools are added to System 690.
h.o,
)
[Chapter VI presents the implementation features and
v'.;‘ﬁ
,mg testing procedures followed in implementing the data
I
o
Qg manager. This phase was programming intensive with the
‘fi'l
Qf objective of obtaining a working system. Chapter VI also
S
s contains an evaluation of the data manager’s performance and
N
oo its ease of integration with software engineering tools.

s,

al "t.xL
.
. L

K and provides suggestions for future enhancements to the data

The final chapter summarizes the results of the thesis

manager and the System 690 environment.

0 8
qi:
o]

LA
L

10 287

B atatatnTaa o
’

3 L] . - (-A : ~-- ‘-
00 GAOAGHA NOAGSOACALAL iy : 0 OnlC e OO K i X , RCSLHESLRAN
R O S e St e A SN A AL ".-".o"..".:"."'f’.",- OO O e OO O X Nt v

W T T b aal L aah aoh Lo e heaad AR _al

w
s
} ﬁ%& II. Review of AFIT Environment and Literature

r\ Introduction

*E The main work done in this thesis was the implementa-
; tion of a data manager which provides a generic interface
;; between System 690 tools and a central database. To gain a
ii better understanding of the problem and its solution, a

?i review was made of the current system and literature to

g. examine the work others have done in similar efforts.

:% There are three topics which provide a strong insight
fg into this thesis. The first topic is a review of the work

accomplished in previous thesis efforts which produced the

-
R AL

current System 690 configuration. The next topic is an

o'e

K

»
.

24

=

examination of the database functions which the data manager

T ES

needed to address. The final area studied is the method-

& ology other systems have used to integrate non-homogeneous
N
" tools.
4, ..
P
4,
ﬁ System 630 Configuration
oy
® Before examining other systems and how they address
s problems similar to those of this thesis, the current System
“r
e 690 tools and their development are reviewed. The objec-
® tives the tools are trying to achieve, the tools themselves,
Y.
- and their configuration are discussed.
*j The basic objective of System 690 is to support the
- standard software development methodology established in the
: Vo
’ﬁ o Software Development Documentation Guidelines and Standards
,‘-l
» 8
"
_.

\ L] L]
".’\ W AT pRar

A i v, Wi e e PR OO O
AT A ."‘.' e, n'.'o' '\'.».c"‘a’. I'.'ﬂ.‘h‘. l‘. t'.‘ oW ‘u)l'u. % Hn, AR L t,' “‘H " 't NGt e et R T Y,

 ~oui

x5

- -
-
- -

‘ «n
A o

L N R Y

L4
'

$
"’
)
*
o
“
P

£ee

n)
-

oy

oy

(5). These guidelines establish a standard documentation
guide which can be used for an entire software development
project (5: 2). The method used to support this standard is
a data dictionary. A dictionary entry is established for
the requirements, design, and implementation phases of the
software life cycle. Each of these phases consists of a set
of action entities and a set of data entities for a total of
six types of dictionary entries. Refer to Figure 2 for a
sample data dictionary entry.

Several thesis efforts have produced a set of automated
tools toc support the concepts set forth in the Software
Development Documentation Guidelines and Standards (5).
Thesis efforts by Thomas (16) and Foley (4) have provided an
automated data dictionary (DD) editor. The DD editor
addresses all three phases (4) established in the Guidelines
and Standards. Urscheler’s thesis (17) produced an interac-
tive graphics SADT editor.

Thomas’ thesis provided one key component to System
630: a data dictionary database (6: 652). Thomas developed
the database schema for all the dictionary entries (16: 84-
147). He also implemented an interactive DD editor which
interfaced with the database (16: 166-182).

Thomas' DD editor was implemented on a VAX 11/780
running the UNIX operating system (16: 184). Because of the

UNIX environment, Ingres was selected as the DBMS for the

DX
a
‘-l; Y tool (16: 185). This configuration established the environ-
N W
s 5 ment Foley used in his work.
b,
&
'
he NAME: mess_parts
. PROJECT: NETOS-ISO
‘ut TYPE: PARAMETER
& ¢ DESCRIPTION: Decomposed message parameters.
™ DATA TYPE: Composite, probably C structure or PASCAL record.
N MIN VALUE: None
it MAX VALUE: None
4 RANGE OF VALUES: None
e VALUES: None
1930 PART OF: None
;;;.. COMPOSITION: SRC
o DST
':"ﬂ SPN
° S
- qrY
o Buffer
o ALIAS: Message Parts
PN WHERE USED: Passed from Decompose Message to Validate Parts
T' Ye COMMENT: Part of earlier design
‘0 ALIAS: messy-parts
~ WHERE USED: Passed from Dump Data to Flush Buffer.
3¢ COMMENT: Part of existing library.
o REFERENCE: MSG_PARTS
hel REFERENCE TYPE: SADT
Pl VERSION: 1.2
W VERSION CHANGES: Component USE added to allow network messages
o DATE: 11/05/85
;&. AUTHOR: T. C. Hartrum
: CALLING PROCESS: Process Message
.‘ CALLED: Decompose_Message(parts list)
o DIRECTION: up
: I/0 PARAMETER NAME: parts_list
s CALLING PROCESS: Process Message
“a PROCESS CALLED: Process Network 4 Messages
N DIRECTION: down
" I/0 PARAMETER NAME: parts
%
-,
oo Figure 2. Sample Data Entity Entry
. in Design Phase (5: 29)

s

rFx
Ty
P

P 0 N ey
o

v X

’ -' -
.n")l"A

]

A

h\.’.‘- A - @

L
v
b

g
H ,?.,'?_ P R

s
3,]
e NS Y b

)
yao

ARy
Pl .

oA
’,l.,

_ Ao
LA, o

s
®

Foley’s thesis was an enhancement to Thomas’ work.

Thomas’ tool was implemented on a heavily used system within
AFIT and was slow enough to generate complaints from its
users (4: A-4). To address this issue, Foley developed a
microcomputer (Z-100) based DD editor which allowed the user
to perform the bulk of his work without directly interacting
with the database (4: 45-72).

Foley’s DD editor implemented a forms based editor for
each of the phases but only implemented a prototype database
interface for the design phase data (4: 70). This interface
converts the DD editor tool file into database entries and
vice-versa (4: 70). Unfortunately, this code is highly
specialized for this phase and extensive work would be
required to extend the interface for the other phases.

Foley’s thesis provided two key components to System
690. First, the Z-100 based DD editor provided a tool which
was significantly more "user friendly” (4: 80) than Thomas'
tool and the additional work on the design phase further
refined the database schema (4: 35). Refer to Figure 3 for
the schema of the data entity in the design phase.

While Thomas and Foley developed a text-based means to
create data dictionary entries, Urscheler developed a
graphics-based SADT editor for use within the requirements
phase (17). A SADT diagram (see Figure 4) represents one

level of a hierarchical decomposition of a system's func-

11

-_’.‘ _'.>~.'-"-.\' /.; > v-ll H“.‘l. -‘ .‘ \~ L0 ‘.‘
SIS SN, NS A G Tttt e e A D R T Yy

" ‘ »
0‘,0",‘, Rag e Y

-

“‘a‘:.
o

tions (13: 192). The SADT editor allows a user to edit and

manipulate an entire diagram (level) at a time.

parameter papassed
project cl2 project cl2
paname c25 paname c25
datatype c25 prcalling c25
low cl5 prcalled c25
hi cls direction c4
span c60 iopaname c25
status cl

padesc pavalueset
project cl2 project cl2
paname c25 paname c25
line i2 value clb5

description c60

paalias pahierarchy
project cl2 project cl2
panaame c25 hipaname c25
aliasname c25 lopaname c25
comment c60

whereused c25

pahistory paref
project cl2 project cl2
paname c25 paname c25
version cl0 reference c60
date c8 reftype c25
author c20
comment c60

Figure 3. Database Schema for a Data Entity
Within the Design Phase (4: 37)

As part of this tool, Urscheler intended to implement
an interface with the DD editor database to store the data
dictionary information generated by his tool (17: 23) but
the interface was not completed (17: 43). Further research

(9), occurring in conjunction with this thesis, is enhancing

12

LPRE ST S LI N IO TS AT IR R T

L] P e ® LT " - - - « ; " , A
<t " -'!’; \ q'.'o"‘.l‘.. lﬁ it .0"- |'! ql‘c"‘l'. .'.; 0""A A q'!'n'?'c’!‘o‘, 'y ’ : ¥ . LT K A R MMM) HEACHRELY O PR

\ﬁ. the functionality of the SADT editor by providing a more
i e

1, complete set of the SADT language. The research is also
'
i; developing the means to generate and use data dictionary
¥, “.'
N information. The enhanced SADT editor is being designed to
A use the standard data file generated by the data manager
t
:? developed in this thesis.
)

o)
¢,

P!

B
Fay lautHon: J. Urscheler ~ [naTE:80-28-66 |READER
. lerocecT: RapD |Rev: 1.0 DATE
!“'
i A User Request
"
X)

.:0 Determi P

A ne Menu arameters
. Request
‘f

o Rsquest

": | Function File ;tructuro

W

A 2 2
a G
: :":: B e g?:;:.. SADT Dtagram
g Screen Varisbles -

l"’ 3

|:i‘

KY.
L)

*’

\l

i.l

::; NOOE : TITLE: Edit Diagrem NUMBER: A3

2.4
WY
®

- -
-

Y

Figure 4. Sample SADT Diagram (17: B-8)

..’
.,

The DD editor and SADT editor are connected to a VAX

°

: 11/785 to create the current System 690 configuration. As
"N

:: shown in Figure 5, there is an excellent opportunity to
f. create an integrated environment where all the tools share
< o,

by data via the Ingres DBMS. However, prior to this research,
5

; 13

[l

b, &

®

K

#

-

. p s AT A o ol < n P55 LA T gt M N0 Yoy N
O R A, e R dhenvnclilialilidintalned o niadteli it

E’ e At S B - AT il A e S

- . only the design phase of the DD editor could interface with
NV Ingres. This prevents the tools from sharing information

" and automated consistency checkers cannot be used against

Bin

;: the various phases of a design (6: 652). This inability of

‘? tools to use and share a common database is the main problem

f this thesis addresses.

3

W Database Functions

a‘ In order to support System 690 tcols, the data manager

o is responsible for many functions that the Ingres DBMS

:ﬁ system does not provide. To gain a better insight into what

;. these functions are, different software engineering environ-

:E ments (SEE) were reviewed to determine the basic goals of a

,? W SEE. The focus was then placed on the functions a SEE's

¢

2: ey. data manager had to provide.

;ﬁ Before beginning the discussion, one important point

iﬁ must be made. The literature brought out a relationship

fz between SEE and CAD/CAM database requirements. Randy Katz

E§ indicated this relationship by grouping large software

i: systems and integrated circuit designs into the category of

‘ﬁ "complicated engineering artifacts"” (12: 191). This

fa relationship proved useful in the examination of database

N: functions because of the large amount of research occurring

“5 in the CAD/CAM database area.

;E Software Engineering Environments. There are a number
of SEEs currently under development, but the two most

., QE; applicable to this thesis are ARGUS (15) and SODOS (7).

;5 14

.

&

v

RORGTIR Y e - I s) R T M o 0 o e S R R a0 T
" o'l "’l‘.“ Sagy, T " ‘ .‘l -'9 -.l 'A‘ W .‘a. ';‘?‘ v 'o' ';‘.'s‘.l n“h y 0\. UKW RN R -...A‘y AN b AR IR I. .'- KL) LR

. Both of these systems provide support throughout the
S
e software life cycle (SLC), whereas other systems tended to

focus more on the coding phase and the associated tools, ie.

text editors, compilers, debuggers, etc.

REQUIRE
DD
VAX
DESIGN FOLEY
6),' CODE
DD
DD
DATABASE
SADT
EDITOR
FUTURE
TOOLS
:- :z
-~ Figure 5. Current System 690 Configuration

15

- -

V-

N . Before reviewing these two systems, a brief overview of

D - -
4.~ .i.' ~
n)',;{,

: general SER features is presented. These features are

| extracted from a survey article (3), which summarized the
general features a SEE should have. 1Its author points out
that these features are not absolute for all systems (3:

" 457) but they reflect the goals of both ARGUS and SODOS.

4 The suggested SEE features are that the SEE:

1) support the entire life cycle,

2) allow links between phases of the life cycle, both
forward and back,

’ 3) contain a consistent interface,

; 4) contain a project/software/group database,
: 5) support project management,

- iif' 6) enforce configuration management,

e

7) be expandible/flexible,

L ReS

8) contain powerful tools, which are integrated and
automated,

- -

9) have reusable tools; facilitate reusability of
software, and

N 10) be portable (3: 457).
v System 630 addresses most of these features but the key
: objectives for this thesis are 1-4, 7, and 8. The data
manager needs to support each of these features. The first

; four topics are covered with respect to the ARGUS and SODOS
. systems. The flexibility and integration issues are
addressed in the following section of this chapter.

The ARGUS system is a comprehensive software engineer-
ing environment using "CAD/CAM-like" principles for software

‘ 16

g PPCTY Vet - U PP EPRR A A 0 0 TR ety nat o, 1 G
'3..4.'.1 .‘na o‘)\ 'e'd'b "’ “. 2 ""’“‘, 4 - 'r’l‘i l‘a‘l‘ ;.i'!‘l.g I'#‘\‘w ‘é’l‘t‘l'"l'. l'i"'ﬁ"‘\"‘\.- l.e.l.- 0"“ e\

Ly

o) = AR LYy
'! LY AR R |.‘\."...‘-'?!"!‘.'| $, . ® t“'* -k’;‘i

- ‘
W' L LS Gia

—~
¥ LY
<

7, R,
e"a"a

o gy

&

._'-'l-.- Lo R

" an ¥

o e
S

C A

'}-

1‘ r - - E]
b, R4
y el &

~

development (15: 129). It shares many of the same objec-
tives indicated above. The primary functions of ARGUS are

to

"... provide computer assistance with the specifica-
tion, analysis, construction, and maintenance of
various software products throughout the total 1life
cycle. Following a CAD/CAM-like approach, this semi-
automated system assists the user in capturing and
controlling design configurations and tracing these
gspecifications throughout the entire lifecycle (15:
130)."

ARGUS supports the full range of the software life
cycle. It breaks the life cycle down into phases and
provides "toolboxes", containing phase specific tools, to
support the user within a particular phase (15: 131-132).
These toolboxes are Manager, Designer, Programmer, Verifier,
and General. The Designer Toolbox is the most relevant to
System 690 because it containg the tools used for document-
ing and controlling the formal design of a software system.

The Designer Toolbox is the portion of ARGUS which best
utilizes its CAD/CAM functions. It controls both graphic
and textual data in its support of requirements analysis and
design (15: 133). It provides templates to the user for
each of the reports used within each phase of the software
life cycle. 1Its use of a relational database to control the
data allows ARGUS to maximize its information leverage.

This leverage is provided by storing all data in a central
database where it can be projected to any designer.

The power provided by the relational database makes the

database a key part of the ARGUS system (15: 129, 133). One

17

y w)\}‘-’:'g.*s.;.*u e A K AT * ST DT A ."\-fi'»."-v‘.'.'.b:‘}'hr_" PR '-)._.'-_.'-_‘.'~_."_."__‘\.’- _._r‘-('-_::,.::,).:-!.‘ o
He By » . ,

-, 4 \)
S ‘.o,.l AT T g0, 000, S0, T TR, Al b DN R R o

\ of the most powerful aspects of the database is its capabil-
™ f’iﬁ‘ . .
B = ity to maintain only one copy of the data and project this
:ﬁ data to tools based on an appropriate template. This
Wty
:‘ concept has yielded a data compression ratio of nearly 1 to
)

ot

. 4. This concept provided the basis for the data manager
4G design and shows the possible benefits to be derived.
A
2? The SODOS (Software Documentation Support) system is

.\.
;J another SEE which supports the entire Software Life Cycle
By (SLC) (7: 8). 1Its emphasis is on supporting the definition
K

: and manipulation of software development documentation.

"
A

® SODOS has two main objectives. One is to provide main-

o,

,f tenance personnel all the information generated during the
>
f; specification and development phases, and the other is to
i .
{ ‘s. help system developers generate the necessary documentation
e
, with a minimum of extra effort.
}‘
% SODOS is based on the use of a relational DBMS and
: stores all data in the project database (7: 8). The data
23 generated in each phase is inter-related based on a set of
ﬁ pre-defined relationships. A model is used to identify the
«z information in the SLC, the relationships among the informa-
hj tion, and how it is used.
;f The data for each phase is stored in accordance with a
@
W document definition which allows the document administrator
.

;— to define new documents based on a database schema (7: 9).
v,
\ This schema establishes the document structure, inter-
L] EEE relationships, keywords, and related documents. This format
L
‘l
. 18

:I

-4
o
ic
': - - » « p» & = 32 a B B A o = ..'l'l'-"-
o A Ty A 4Tt T 7o s i Sy e e B B TS

®

provides a large amount of flexibility from project to

project. As part of this definition capability, the
relationships between the data in the separate phases are
established, which allows easier consistency checking.

The SODOS system exhibits many of the characteristics
of the current data dictionary editor used in System 690.
Both systems address the requirements, design, and implemen-
tation phases of the SLC. The concepts shown in the SODOS
system point to the feasibility of this thesis effort and
its contribution to providing a more useful environment.

Data Manager Functiongs. The surveyed environments all
utilized some type of data manager to interface with a DBMS
to store and manipulate the data. These data managers are
pivotal to the success of SEEs and, as stated earlier, to
the success of CAD/CAM systems. The bulk of the research
performed in defining a data manager’s functions is in the
CAD/CAM area, especially in VLSI design. For this reason,
much of the following is extracted from CAD/CAM environments
but is applicable to SEEs as well.

A good summary of the requirements and problems a data
manager must address was developed by G. P. Barabino and
others (1). The requirements and problems are the

1) management of complex data schemata,

2) 1likelihood of frequent changes in data organiza-
tion,

3) manipulation of huge amounts of data,

19

:; . 4) control of data coherency and redundancy minimiza-
STEEEREN tion,

7‘ .

o 5) security against unauthorized accesses,

D.~

)

’ 6) provisions for back-up and crash recovery proce-
P dures,

\ 7) support of concurrent access to data by many
: designers,

N 8) support of design administration and project

wﬂ management,
9,
0'|.
f 9) automatic enforcement of some consistency con-
A straints on data,

l*‘

:j 10) support of design hierarchy and complex objects,
I '-'
LN
~3§ 11) wuse of long fields for storage and retrieval of
o unformatted information,
b
.'
sf 12) provisions for navigational facilities among

) design data,

6?& 13) support of long lasting transactions, and
[J
14) interactive level performance (1: 577).
The above requirements are in agreement with other

authors except for managing versions, which is not listed.

Ui f' .‘,v.",'.-_".l_ '.',' B

ﬂ Barabino does address versions in another article (2: 800)
ij which improves his approach.

;{ As Barabino points out, the first seven requirements
f? can probably be handled by current relational DBMSs (1:
iéi 577). However, the remaining functions require either an
7:? extension to the DBMS or a data manager which works with the
Yo
Eg DBMS. The Barabino effort used the latter approach,
:4 developing a means to satisfy the requirements without

g! — modifying the DBMS. The system utilizes three interfaces:
. et

1) Direct access with the DBMS (Ingres)

-

2 TR A

20

-

Wy ~ g 0 SRS TRt Tty 1Y) Nt Sy S T A T .‘_?};. e,
"r!',o)'ﬂ 3 :' o LA e) b, 'r ’ L e 5 AT e s T

-
ST N Ty WY 4Ty S 0ed, b XM M P MU B M

N

..l (] A

ﬁb d&} 2) A Data Base Interface (DBI) Module which supports
o the requirements listed in items 7 - 12

\; 3) A Local Information Processing Subsystem (LIPS)

- which provides an interface between the applications
- and the DBMS for limited design data subsets requiring
N short response times. (1: 578)

2 The DBI is important because it provides several func-
'5 tions which are gsimilar to those required in this thesis.
Re The DBI is implemented using EQUEL (Embedded QUEL) and
[4
'r_ supports project management, consistency constraints, design
v
$: hierarchies, data management, and navigation through the
’.l
TN data (1: 578). According to the authors, it allows the data
L3
. management and application program problems to be addressed
.\i separately. By doing so, the DBMS structure can be changed
O

n without changing the application and vice-versa. The DBI
N e
K. also addresses the management of design versions and
.
1 2
::; alternatives (2: 800).
PN

w,

ﬁ) The functions a data manager are to provide have also
‘:S been addressed by Randy Katz (11, 12). EKatz's consider-
WA

] \,

:: ations are similar to Barabino’s (1) with the addition of

[

By

“ the following:

N

1?5 1) A design librarian supporting check-in/check-out of
b design parts from the database

éﬁ 2) A method to track design versions (11: 27).

0.

v The design librarian is an important component because
.

;3 it coordinates all access to shared design data in the
gi{ central database (11: 33). By employing proper check-out
| R i « . . . R .

.qj O policies, it guarantees only one in-progress version exists

v
>
®
WP
‘}‘-

I’ .c

vl
o
.ﬁ; of an object. This control, allowing the objects to be
nﬁ i viewed but not updated, improves the usability of the
;} system.
252
S
S The means to manage design versions is also a vital
¥ :\ -’:
f) component within a design environment. Katz feels that
t
20 proper support of versions is critical for successful design
kﬁ, data management (12: 192-193). Two of the primary goals he
D) lh,‘n
&4 feels must be met are for the versions to require minimal
:;ﬁ redundancy and be quickly retrievable. Katz presents
-
",\
:: several approaches for version management which the inter-
~
';~ ested reader may find discussed in detail in 12: 193-200.
')
o
:ﬁ Tool Integration
'f“ cﬂh The ability to integrate heterogeneous tools is
L

becoming a key research concern as more and more such

systems reach the user’s market (10: 111). This is espe-

-

cially true as evidenced by this definition of a SEE:

"

s N
A ® ?ﬂ"‘f'-"{\.\.'- -~ LR

]
A AR,

.. a set of tools, structures, rules, and procedures
that together provide a framework for software develop-
ment and support (3: 456)."

The key part of this definition is that the tools and

structures work together. Since a goal of this thesis is to

-

provide a means to integrate System 690 tools, the methods

%
‘ol
';' used to interface different tocls are examined.
Lrs There are several methods used to interface different
-
':: tools. The most common are
g
s 1) ad hoc communication between each pair of tools
5. - .
Py T using pre- and post-processors,
B ".: ‘."’g’
R -
N
j‘. 22
3
o
_‘l'"\',

:" Low
X0,

PO A T & A
L % S D RaTi Jhr I c‘l -“0“'0. " " \ e -.l o.. 0y .'» .'l."l“' .'a'.'l'-'» | :‘; A AN
\'-Q.Oq Kk L XL = LN c‘

B i it ot

K

o
o - 2) placing all the applications within one environ-
b e ment, and
4
4

J3) using a single database manager with each applica-

' tion interfacing with the data manager to access the
g; data stored in a DBMS (10: 112-113).

A
;? Of these, the third is most relevant to this thesis. Ad hoc
:a communications are not considered because of their inef-

?: ficiencies (10: 112). Placing all tools in one environment

Ko
L)

h is not relevant given the current configuration and goals of
’
p System 690.

-5
ﬁ: A data manager has been implemented in systems such as
Y ,\
rf‘ Polylith (14) and SDE (8). The basic concept of these
@

Y- systems is to provide a single interface between the tools
[and the central database. Without this single interface,
ﬁ.\ each tool would have tc manage a "power set"” number of
{ ®
[}

O interfaces to communicate with other tools (14: 13). The
M efficiency and applicability of this approach to the System

L
:3 690 data manager makes these concepts especially relevant.
 3 The Polylith system tries to join various component
,

"

K tools by addressing the problems of data interchange and

; tool synchronization (14: 12-14). The system uses a

<
ey Polylith grammar, in conjunction with a Message Handler, to
o
~: provide the tool interface. The Polylith grammar defines
°. the data and format required for a tool and the Message
"

e Handler uses this information to retrieve and build the
~1
*l
13 appropriate message for the tool.

L4
[3 J&Q The Message Handler provides the data manager role in
'z t‘ the Polylith system (14: 13-17). It carries out all
Yl

23
[}

®

by
'. ¥ i - T W L B R T N I I R SN R VR A W . A - wm® A
e g R s

o
B
L™
f - transactions requested by the tools and tracks the status of
-, :*-"\'
- T the data. The author identified the Message Handler’s
) ability to perform automatic data transformation as a novel
- agspect of the Polylith system. The biggest advantage of
"+
T' this capability is that the system allows the addition of
2 new tools to the system without having to discard or modify
3 old tools.
14 The SDE system offers a similar approach to the tool
fk integration issue (8). Hsu addresses the problem of
k. interfacing design tools which were originally designed to
X
N
® be stand-alone systems (8: 733). The SDE integrates the
. .
& system’s various tools.
N

F 3
Fefz"a

Py
9,
Q=

The data manager is the kernel of the SDE and is based

on the Ingres DBMS (8: 734-735). It controls all access to

B

15 the data, defines the data structure, and provides a commocn
E database for the various designers. It also manages version
- and configuration control.

;F' Although the data manager is vital to the SDE, a tool

i manager is required to perform the actual tool integration
: (8: 735-736). A basic data structure was identified which
:? was common to all tools. This structure is the basis for

f: the tool integration. The tool manager adds tool specific
;g views and information to the basic structure to allow the

;i tools to interface. Once the tool receives the data, it can
ki operate in a stand-alone mode, and upon completion, load the
g f;i new data into the common database via the tool manager.

7, - .
D R A N
A e p e e
o7 AT e N e,

3

AL~

LAY

.i r

1

2
e §

LR L -

ra
L 4

. , ‘,,,.
4 P N »
¢ T .
.
A

- }‘}J >rr

X X

The key features observed in the Polylith and SDE

systems are their use of a common data structure for
messaging and a manager which can manipulate this structure
to support the requesting tool. The key advantages observed
were the reduction in the number of interfaces a tool had to
maintain and the adaptability of the system to incorporate

new or mcdified tools with minimal system disruption.

Summar

The review of System 690 environment showed it to
congist of two primary tools; the DD editor and an SADT
editor. While both operate well in a stand-alone mode, they
currently have limited or no access to a central database.
Because of the continued work with these tools, the database
schema has been identified for their inclusion in the
central database. The basic problem is how to interface
these tools with the central database.

The review of current literature examined other
environments and research efforts for an insight of how they
addressed problems similar to those of System 690. Their
solution was to implement a data manager which used a
standard interface for all tools. The tools interfaced only
with the data manager and did not worry about formatting
data for another tool’'s use,

The findings of this review show that this thesis
addresses items which are current, relevant concerns of the

software engineering community. Further, the review iden-

25

Caar A _: o .:' . .. : - :'-.’-._r:__\’-;\.,,x.‘r:.‘-\‘\;’ \J"";':V". 's* M

.....

W
‘f tified many of the requirements of an integrated system and
'{ the role the data manager is to play. These findings will

be beneficial in the following Requirements Analysis

-

Ay

chapter.

-

IO

hdar ¢

= Tl

- - - - 5
LAY Yo ol ol

v

26

-.
Y e i N W a W

4

. v L SVl < -

- - - - - - . oas - AW e | | G ~y g . B W gy M MWy e V"
N NS S A NN et L T PN TR EN T Ny EA Py o, . XA ¥ \ X
' ‘l .i‘- -C . \.‘. J"’ "i ., @ 008 A AT YWY l‘ w ¢li.‘ (Ah R » . Yo R N R B R R 1% !‘I‘.‘Q .'i‘. l‘-) -'l Wy P K ‘. Jh e

1

i/

Tl
R IS
5

K

of

et

&

Y

A

% N ITII. REQUIREMENTS ANALYSIS
v

o

o~ Introduction

.

J_'

< The basic objective of this thesis was to provide a

P -

f‘ common interface which integrates the tools within System
ﬁ& 690, enabling them to use a common database and share data
.fa (Fig 6). A review of the current SEL and research efforts
C addressing similar situations showed that a data manager
:\j controlling the database and using a standard data file as
f '\)

LN

:*j the interface between the tools and the data manager was a
L

) valid approach (1, 8, 10, 14). An important component also
i

;? identified to support an integrated environment was a means
*: to provide a database librarian function through session

. M
{ ° control (2, 11, 12).

‘S This chapter provides an overview of the system’s
o

o basic operations and then egstablishes the requirements of
1)

:) the standard data file, data manager, and the data manager’'s
L~

% session control mechanism. The requirements of the common
ol

;E database are also examined.

;! Before beginning the requirements analysis, several

*F

i definitions are needed. A data entity refers to all the
!; information describing a data dictionary entry. The data
.

7 entity consists of multiple data elements. These data
b

'ij elements are the values representing specific data fields in
‘o

"

fki a data dictionary entry. A session refers to a tool-data
S

7 .j;a manager interaction where data is retrieved from the

o s

R N

. :_'5

2

ﬂ 21

[]

.ﬁ

4."‘
q

- ~A

h P L YL 1’ & e - {*
! NN ‘-‘:\Ei:EEC
380 E08,07% ‘;i“\;

M s S maa s acd e a ai s s i ah vk a-goachoacg o s acg gtk atd ok odh b bk ath old ot ablali-abiadeak TN GO T T T TERTON TRw T T

database, manipulated by the tool, and stored back into the
;_ o database. A transaction is a request to the data manager to
L {

perform a database retrieval or update.

LI

Lo

REQUIRE
DD

oe” N e

P Wy &

£

Lol
XA

e

DESIGN STANDARD DATA VAX
DD DATA FILE MANAGER 11/780

LR Mg

P

-
rx./s‘:‘.' Ll
= NER

CODE
DD

) _
=
o'

A
»r & 7

CENTRAL
DATABASE

WA

5 %

SADT FUTURE
EDITOR TOOLS

- e e e =
L4

AN :
",- ‘1 ‘. ‘l,‘j. ‘ ’x)

»
T

S
'y l' y

.5, ®

Py
1 al

=

=

»_._a -
R 3

-
) r
. =
’

$§§ Figure 6. Goal System Configuration

. s
-

28

- ,
SN e 1Y

¢

)
2

ex

g

LA A R AT A TR LA
h-w’ -fhf P L - / e
®) : :))

\.&-I’.ﬂl

L3
>
s
.

"
\J\) J’/ D

o O

>

WRN

e

i 5 N l‘:ll’.'l ""|A‘

, i
ok

Overview

The primary requirement of this thesis is to provide a
standard data file and a data manager which can manipulate
the standard data file. These two components must be
adaptable to changes and additions in tool data needs. The
standard data file is the data interface between the SEL
tools and the data manager. The data manager must use and
create the standard data file and provide session control to
meet its requirements. The overall interactions between the
data manager, the tools, and the database are shown in

Figure 7.

JAUTHOR : Connally DATE: 10/18/87 |READER
PROJECT: Bld Data Mgr REV:1.8 DATE
Transaction Request
Standard Data File Mﬂo
Database Data _D%.
R . Manager Transaction Results
[———————
» eett] 1
L Session Information
TITLE: System 639@ Data Manager NUMBER :

Figure 7. Data Manager SADT Top Level

29

-~ The data manager performs many tasks but its basic

function is to retrieve data from and write data to a common

N database using the standard data file. This is reflected in
s
A" . . . PR
s Figure 8 which shows the major activities the data manager
A . . .
X must perform and the data it is required to use and gener-
)
‘?: ate. The following sample session is provided to show how
L)
(" =
o
b . .
K. the data manager uses and creates the various data items.
P "
{
R A"
1:}{ AUTHOR: Connally DATE : 18/18/87|READER
N PROJECT: 81d Data Mgr REV:1.8 DATE
3
-
o
.‘ Transaction Request
N
A Retriey Standard Data File
- Database e Data Transaction Results
.J':'- 1 Session Information
b .'Q‘ » .1'..
o Ye
.":-
He
i
o ~————{¥rite
el Data Datab
) ‘- Standard Data File | 2 Atadase
W,
o
-
-~
-
) :‘.‘
.2
L NODE : TITLE: System 698 Data Manager]?unasa:
T g
Nt
\‘_‘
.
Y Figure 8. Data Manager SADT First Level
y
~ Sample Session: A user or tool will request a

" data entity(s) from the database. On receipt of
. the request, the data manager will retrieve the

o data and provide this data back to the requestor
e in a standard data file. When retrieving the
o T data, the data manager needs to provide session
- T control to maintain database integrity.
K-
g 30
®
L4
S
: .".';f':f-:-.:'- ":';‘ !":":'."-';- et - ..':l ;9:':‘.0 . "." \y".'.\"k‘%x.\ ﬁl'- TN ‘(‘

G
O
b
R
L) A *.:’
+igWA
.$¢ When the desired changes have been made to
:\j: o the data, the tool which checked-out the data,
e requests to update the database. The data manager
G will usre the standard data file, containing any
WY change:ss made by the tool, and the session informa-
K- tion generated during the retrieval to coordinate
o and perform the database updates. After the data
:ﬁ& is successfully written back to the database, the
0 session is terminated.
1
’_‘
hﬁ; This sample session shows how a typical session will be
[\ 7=),
QQE performed. It also indicates the dual role the standard
L
\ data file and session information provide. The impact of
™\
P this dual usage will become evident in the remainder of this
“:/-:
i) chapter.
.T
RS Standard Data File
;; The standard data file is the means used by the data
(’ y ﬁg‘ manager to transfer data between System 690 tools and the
ﬁ:f commcn database. It provides a standard file structure for
oﬁﬁ all toocls to use in interfacing with the data manager. The
»

file is the interface and therefore must contain not only

U.-"‘)

o~

o the requested tool data but also provide control information
i. to the tool by describing the contents of the file.

T

]

® The requirements of the standard file are examined with
P j":
':;2 respect to its two functions: data transfer and file
i\ "u::‘-

‘:?; description. The data format requirements are based on the
\',..'

g~‘ types and structures of the data being transferred. The
T

S file description requirements are based on the information
ol

2$: necessary to inform a tool and the data manager what the
?f 5 contents and structure of the file are.

S T

A A

PP I

N 31

s

@

NP

o

o

-

el

WX
N
“\'t

. e

'....‘o-' ”

17 e
=

> et - ARG

-
sl P S

‘.“.‘; Ift—'J'tA'-'l PR .4'..

Data Format. The initial step taken in determining the
data format requirements was to identify the minimum number
of file entries necessary to describe a data element to a
tool. Then, based on an examination of the data dictionary
fields and the relations in the current databases (4, 16),
additional entries were included in the data format.

The absolute minimum information needed in the data
format is the data itself. Without additional information,
the tool would have to depend on positional notation to
process the data. This is not a valid option because the
number of data elements used in a data dictionary entry
varies from one entry to the next. To avoid this, the name
of the data element must also be included.

The next entry required is the length of the data
element. A data element may be any valid Ingres data value
length, therefore no default value may be assumed. Further-
more, one tocl may display an element as an 60 position
field while another uses it as a 40 position field. To
prevent the possible loss or incorrect use of data, the
inclusion of an element’s length is a minimum requirement.

The minimum entries identified are the name, element
length, and value of a data element. However, these entries
only describe a data element’s characteristics, not its
function within a data dictionary entry. To further
identify a data element, its function within a data diction-

ary entry needs to be established. These functions can be

32

‘ 5 55
' o) I’ﬁr'ﬁ/""_ Pd

Pl Siarteligi)

*

] 'n"l",
FSAS

PRV

L K

» -
::')/-

- ‘
Pl «
Atn ®

- - LT
() S b

* &y

O\ CERRNRRR ARAN

4

k)
I“
14
s

Pl

. l" .l' .') l‘.

-~

» K]
0

j AR
oL 4 EAUUAAR

:
A

1
’
\

P

.
‘ £

RS

"n. Pt 4

e
v N

4

RPN

.ian

.. c |‘0

broken down into several basic field types: single-line

fields, multi-line fields, group fields, and multi-line
fields within a group field.

A single-line field is the simplest of the data
structures to be transferred. NAME (Fig. 9) is an
example of such a field. The already identified entries
adequately describe this data field. Therefore, this field
places no additional requirements on the data format.

A multi-line field is not as simple. DESCRIPTION (Fig.
9) shows a single data field which may consist of several
lines in a display. The database tracks such an element by
lines (reference padesc in Fig. 10). To indicate to a tool
it is dealing with this type of data element, a multi-line
indicator is required in the data format entries.

A group field also requires an additional entry in the
data format. The ALIAS field (Fig. 9), with the associated
COMMENT field, is an example of such a field type. The
relationship between these data elements need to be reflec-
ted in the data format file.

The last type of entry, multi-line field within a group
field, is not required by any of the current tools but may
be added by future tools. An example of such a field would
be the COMMENT (Fig. 9) entry being a multi-line field
within an ALIAS entry. The data format would have to be

able to identify this type of element to a tool.

33

ﬂ P L3

. r - \ -~ ‘ N . F{
. . .t‘. v r oOu ‘i. 0} u' '0.'"‘.'0‘ .0.!'0‘:'0‘-% t't‘n‘l. z'*;'l,r'l.»-'l'ﬂ oI" .l u'l g.l

W4
"

"

"y

o

-

S . The data dictionary field types were used to identify
ALY

AW

; w. the above requirements. However, the relations used in the
h-. database create additional requirements. Certain data

"

N dictionary fields use relations where the value of an

]: element and its use in a data dictionary entry are deter-
~: mined by other attributes within the relation. Examples of
<

" this type of data dictionary field are the INPUT DATA, INPUT
N

(FLAG, OUTPUT DATA, and OUTPUT FLAG fields (Fig. 9). The

49

;: relation attribute (paname) is the same for each entry and
\ is stored in the processio relation (Fig 10). Since all

)

q four fields use the same data value, some means to identify
W

¢ the differences is required. The differences are shown in
.

,
{ ds; NAME: (of process)

R PROJECT: (project name)

. TYPE: PROCESS

R NUMBER: {node number of this process)

i DESCRIPTION: (Multiple lines allowed)

- INPUT DATA: (Multiple lines allowed)

; INPUT FLAGS: (Multiple lines allowed)

,: OUTPUT DATA: (Multiple lines allowed)

' OUTPUT FLAGS: (Multiple lines allowed)

. ALIAS: (Multiple entries allowed)

§ COMMENT: (Why this alias is needed)

y CALLING PROCESSES: (Multiple lines allowed)

n PROCESSES CALLED: (Multiple lines allowed)

“ ALGORITHM: (Multiple lines allowed)

- REFERENCE: (Multiple entries allowed)

_: REFERENCE TYPE: (SADT, text, etc. for this reference)
. VERSION: (Version of this data dictionary entry)

< VERSION CHANGES: (What was changed from the last version)
. DATE: (Of this data dictionary entry)

- AUTHOR: (Of this data dictionary entry)

:
199
1)
? ~3§} Figure 9. Process Data Dictionary Entry (5: 26)

.

y 34

q

»
)
3&

o
i
Lt
KA
f:j - the direction (IN/OUT) and type (FLAG/DATA) attributes in
. "
AN
;x s the processio relation (Fig. 10). A similar method is
f} required to uniquely identify the data values in the
¥

>
*; standard file.
g
VI
‘W

%; process prdesc

e project cl2 project cl12
el prname c25 prname c25
r number c20 line i2
; status cl description c60
T processio pralias
4: project cl2 project cl2
" prname c25 prname c25
; paname c25 aliasname c25
v direction c4 comment c60
e type c4

g pralg prcall

] s project cl2 project cl2
{ ‘Tb prname c25 prcalling c25
e line i2 prcalled c25
5 algorithm c60

:g prhistory prreference

A project cl2 project cl2
:) prname c25 prname c25
lﬁ, version clo0 reference c60
5 date c8 reftype c25
o author c20 comment c60

L
R ™

o

L)

29

2 Figure 10. Process Database Relations (4: 36).

v,

: The combination of the initially identified require-
.
‘;L ments, the data dictionary field types, and database storage
.

" mechanisms have produced the following minimum entries to
in identify each data element in the standard file:

—

- A

i: T 1) Name

; :::j 35

:.:-

.

;:n.'

PR T a LA W ARA NI TR 00 R W, W ATl
:l‘l ‘q K .l...’ o"r.t' ’.'l"l'a n»v L BT o A ..‘15'0 ot """’“‘# 'v“‘- why

LPT L) -".'."-,l AP OR AN ,‘_{.’.fA’I‘.,
G X

e 0 \
RN MR W AOSO A

bt
A

X
‘.
oy
Fi“
. 2) Length
N
. Bk 3) Contents
, 4) Multi-line
o 5) Multi-field
N
ﬂ?' 6) Direction
?‘ 7) Type
#f File Description. The requirements for the contents of
~
)\ the file description header are based on the need to
[}
-
;:: describe the structure of the data elements to both the
1
’:4 tools and the data manager and provide control information
o
° to them. The data in the file will need an identifier which
{E indicates the type of transaction which generated the file.
ti To prevent a tool from trying to use data structured for
(‘ ‘r;‘ another tool, a means must be provided to insure the data
b
"
:i contained in the file is compatible with the tool. A method
o

L

to show the type and amount of data contained in the file is

LY

19

also needed to describe the total contents of the file to

¥

-
.‘
r'S

Q the tool and data manager. The final requirement is a

A

<

3 provision for a means to track tool usage data for use in

.!. analyzing usage patterns and tool performance.

'
.: The identification entry indicates whether the standard
i~
o
O data file was generated by a tool or the data manager. A

°

" file created by a tool would be used by the data manager to
:i update the database with new data. A file generated by the
'-

i data manager would be used by a tool to manipulate retrieved
e TN data. This file needs a session identifier associated with
AN)

\

l' ’,
pn 36
O

@

.’ 1]

s

N N s
‘f":"t".r.l‘ . ‘ ' » i " ‘- % 5 ’;"“‘P D A ~ L "0 5"‘.’ .;"-rb r u.O o .0 n'l L) 'l L} 0.'.0 0‘.'0.0 * ‘ . : B !s'; v !'l...l "l "l ‘v.:'l f

Je5

ﬁéé

XX
S,

v]
¥

L4

-
! :"

S

- oy

4

%

i

%

b

e~ W
.'V':

A
3

a PR
' '.r"‘l"'l ..l '.'

-

- W e

"‘
5

Py

Lo
-

Py

(]

L,
L5445

i®
-

]

"""::." - ;

L] ." . ;
‘_. ’. H

2 8,8, 4 & 8,
L
LA s,

I ®

e

rrAAS

it which identifies the contents as being checked-out. The

data manager will need this identifier to check the file
back in. Because the identifier must be unique to identify
each checked-out file, the tools will need to maintain this
identifier throughout a session.

A tool identifier must be associated with a file to
insure that the tool accessing the file is compatible with
the data it contains. A basic requirement of this informa-
tion is a header entry which uniquely identifies the tool
for which the file was generated.

The data description requirements fall into three basic
categories: indication of the project name, the phase and
type of the data entities contained, and a list of all the
data entities in the file.

The project name of entities contained in the standard
data file is included in the file description header because
of its importance in identifying a data entity. Project
serves as part of the key of every data dictionary relation.
The addition of the project name provides a more complete
description of the standard data file’s data entities.

The phase and type information is required for those
tools which can manipulate data entities in more than one
phase of the software life cycle and/or use data that can be
either object or action entities. The phases and data types
refer to the phases of the software life cycle and the data

types which occur within each phase. The data manager is

37

v‘l'i".I!..’- ‘li

-
' > h

v

..
"
bl RN

by |

l.'.\"-'v'

BN

R

-'(\i.

"n

®;

‘-

-“\q’

required to support three of the life cycle’s phases:

requirements, design, and implementation. Each phase uses
activity and data entities to describe the software system
within the phase. The requirements phase’s data types are
activity and data item. The design phase’'s data types are
process and parameter. The implementation phases’s data
types are module and variable. For a complete discussion of
the phases and data items used in the SEL, refer to the

Software Development Documentation Guidelines and Standards

({5). For the remainder of the thesis, phase will refer to
the requirements, design, and implementation phases. Action
entities will refer to the activity, process, and module
entities. Object entities will refer to the data item,
parameter, and variable entities.

The DD editor is an example of a tooul which uses a wide
range of data types. It can edit data in all three phases
and uses both object and action entities. Without both
phase and type information, the data is not adequately
described.

A summary of the data entities is necessary for those
tools which access multiple data entities within a session.
The SADT editor is an example of a tool which uses both
action and object entities within a single session.

Therefore, a method to identify the name of an entity and

whether it is an action or object entity is needed. The
38
;amv'vvv """ Ll o SN’ A e 'ﬂfff-’“ﬁxas N RIRERLS N
‘- % .& 0'0.:' " ,n’i () ..a. QQ; .C "' ‘.‘- \ R aX} L) < o X

number of entities is also required to support any tools
which dynamically allocate memory for their workspace.

An entry is also required which indicates if a data
entity is in a read or write status. This provides the tool
and data manager information which allows them to implement
some type of update control or to highlight data it does not
have permission to update. This feature is necessary to
inform the user that he is attempting to update data he does
not have the privilege to modify.

The final requirement of the file description informa-
tion is for it to be able to track tococl usage. A tool usage
monitor is available which measures the time a user spends
within a session. The monitor requires the start and stop
date and time for each session. Entries to contain these
times must be included in the file description header.

The evaluation of the file description header has
produced the following requirements:

1) Session Identification

2) Tool/File Compatibility Header

3) Project

4) Phase

5) Type

6) Data Entity Summary

a) Entity Name
b) Action/Object Type

c) Read/Write Status

39

5

&
el
> N
D) ’-
-Vq
SR
‘:f e 7) Start/Stop Time Entries
"‘ .’::’.
'
‘ Data Manager
-‘-‘:
‘:j The data manager’s requirements cover a broad range of
b
;‘ functions. The data manager’s primary functions are to
')
;y retrieve data from and write data to the database. The data
ﬁf manager must also provide an interface which allows tools
.
;,‘ and users to specify the transactions to be performed. The
\
L)

data manager must generate and use the standard data file.

‘I "
PR
_

;:i It also needs to support some type of session control to

N

:ﬁf protect database integrity.

éf Tool/User Interface. The tool/user interface is

gs provided to allow a tool/user to specify to the data manager
.’

i'ﬁ {;” the type of transaction to perform and provide the toocl/user
ff the transaction’s results. The interface must support both
;§ interactive and batch requests. This requirement provides

[

greater flexibility for smart tools that can build batch

)

_; requests without the user having to interface directly with
N

Eﬁ the data manager (Fig. 11). The interactive interface (Fig.
o

é: 12) is available for use with tools that do not have the

ﬁ; sophistication to perform a batch transaction.

‘ég The tool/user interface needs to generate a transaction
féﬁ containing sufficient information for the data manager to
g; perform both database retrievals and updates. The transac-
ig} tion contains two types of control entries: common and type
;:? 2 specific. Common entries are those which are used in all
!;E - data manager requests. The specific entries are determined
..{* 40

e

%

Veyprrrdd

-
L5555,

L ST,

-

n

", _‘_. 'l‘.!:'.'v'IA.‘l"I"l‘).-_" AR M

o an g
b RN

.«

'y

‘
Nt
e

]

I,
|

L Sl ok Bl .2 Pod Kaf to @ .8 B8 Toh Sok Bl Rl Bal Jhad

Use:/

Tool
Interface

Transaction

Tool

Request

Y

Data
Manager

Common
Database

Figure 11. Batch Data Manager Interface

Tool

Standard
File

Data
Manager

Common
Database

Figure 12.

41

Interactive Data Manager Interface

»

A

LAt

LS R W o

l'{l }l

;;ﬁgyb .

e o by 4 Ty o
P
s A0 1,

4

’.?., .

P

P ARAAOIE
AL 1A,

»

b 2 %
ay a,
y

~
Ay

= & \
PSS

N

ey
NS

EM
-«
"™

T

s
':{‘

v

/‘é-.?

ﬂ\‘u“ls
AP R

P
ANLER S &
Vde

'

= -

. \-: .

i
[

by the type of request. The entries contained in a transac-
tion request are discussed in terms of being in a file with
the understanding that an interactive menu could provide the
same type of information.

The common entries are those which identify the
requesting tool, database name, standard data file name,
type of transaction, requesting user, phase and type of
data, and project name. The entries for an update request
correspond to the common entries. The retrieval request
requires additional entries to identify the data entity(s)
to be retrieved.

The tool requesting a database transaction must be
identified. As part of this identification, the phase and
type of data is also needed. The phase entry is necessary
to support multi-phase tccls, such as the Data Dictionary
editor. The type entry is needed to identify whether the
tool uses action, object, or both types of data entities
within a phase. This requirement is necessary because of
tools which can use one or more types of data within a
session (ie. activity and data item).

The database name is required to support the existence
of multiple databases. This would allow for the databases
to be separated for use on different computers or to isolate
the data of a particular user or group. The only require-
ment for separating the databases is that each database

contain both action and object entities within a phase. 1If

42

“afat ol fat

Y X

. g e
WL LT

108 <,

- o

PRF A i B |

- -

[

s

- e

'y

)

- " - » ¥ U A * 44 | o B T T 408 Ty TATTHTETPTTFT AR TETETRATRTET R

the databases are on separate systems, the user will be
responsible for directing the transfer of transaction
requests and tool files to the appropriate system.

The transaction indicator is needed by the data manager
to control its actions. The basic types of transactions are
retrievals and updates. A retrieval transaction will
generate a standard data file and an update transaction uses
the standard data file to perform database updates. Because
the standard data file is used with both transaction types,
the file name must be included in the transaction.

The identification of the requesting user is required
for data access control. For retrieval requests, only the
owner of a data item is allowed to retrieve it for modifica-
tion, but all users may read the data. For database update
requests, the user must be identified for the data manager
to determine if the data can be updated by that user, and if
not, prevent the user from modifying the data.

The final entry shared by both update and retrieval
requests is the project name. Project name is part of the
key for every relation in the database and must be provided.

The remaining entries are for use in retrieval request.
These entries identify the data items to retrieved. The
means to identify the required data items needs to be as
flexible as possible. There are two ways to request the
data. The most common is by explicitly listing all the data

names. The second would be to identify a parent data entity

43

............

“« 4

e ey

EE

LLR AR e

‘ --' L l" -{'\-

and return the data associated with this specific entity by
levels of detail.

The ability to explicitly list the data entities needed
is beneficial for tools which can only work with one entity
at a time or with disjoint sets of data. However, the
capability is also needed to list multiple entity names for
those tools which can manipulate multiple entities within a
session. As part of identifying the entity, the type
(action or object) is required. This is necessary because
of tools which simultaneocusly use both action and object
entities.

The ability to retrieve subordinate data based on a
high-level (parent) entity is required for tocols such as the
SADT editor. The SADT editor uses multiple action and
object items during one session. It would be very difficult
for the user to remember all the data entities associated
with a session, but the user would know the parent name of
the session’s entities. Allowing the user to specify just
the parent greatly eases the toocl user’s burden and reduces
the posasibility of errors created by including or omitting
data entities.

An additional requirement exists for the capability to
explicitly indicate the number of levels to be retrieved.
This entry would be used in conjunction with the parent
entry. This requirement exists for tools which can manipu-

late multiple levels of data.

44

WPV AN ALV P I Sl I " WA s v A -r.r-.' S CATRUALY o <
' - .'('.-f ’ o ” J”’ ,.f~!‘$(“f~I .ﬂ» ‘f W -’. Jl\r w '. . '# ™ " \ .‘ A W \ "v “ " \
[i 8 o \ L i o !

POAN DU e N ..hu' G

NENRNFEFNE SRV Y WITW

The user interface requirements are that it allow both

S
o~
e 4
P

4 batch and interactive access and provide the following
INL)
fq information to a tool:
s,
,*: 1) Tool Identification
B
\ 2) Database Name
L)
O 3) Phase and Type of Data
» %:
g 4) Transaction Type
.'!
: 5) Standard Data File Name
.' -
;j 6) User Identification
,{.:
B 7) Project Name
1%]
in
L] 8) Data Entity and Type
v
e 9) Parent Name
4 *:
ﬁjs 10) Number of Levels
A o
) ® The data manager needs to provide a tool/user the
e
'2 results of a transaction. The results need to reflect
;2 either the success or failure of the transaction and, in
Fz case of failure, identify the cause of the failure. Because
.
. ? the data manager supports both interactive and batch users,
>
.§$ the results must be capable of being displayed to a screen
®
Yo during an interactive transaction or to a file during a
L ‘\'
-: batch transaction.
AL
'i- Data Retrieval. A primary requirement of the data
o
. manager is for it to retrieve data entities from a database
W
jﬁ for use by any tool using that database. The data manager
-I‘__.
o
i) must be capable of retrieving single or multiple data
> NP
Tf. Gl entities which are action and/or object entity types and,
MR
"
_p:
45
41k
®
Ly
¢ 4
of L

P
a

4 Y - S "
:.,’ D.A‘\ X 0".0'.' ..1¢.:.l' "‘Qh

L=
‘?; i most importantly, do so in a generic manner. Another
éa R important component of the data retrieval function is the
;: support of session control.
3? To retrieve data entities from the database, certain
%‘ key fields must be provided to the tool. These fields are
.Ei project name, data name(s) or parent name and level, phase,
:g and type. These entries uniquely identify the relations
;‘ which are required to build a data dictionary entry.
;;g However, varicus tools may have different data requirements
N
E even within the same phase and type. To address this, some
%)
i; means must be provided to identify the necessary data
;33 elements to be written to the standard file, and the order
?& in which these fields are to be stored. Whatever means is
{; }% used, it must be generic so that common code can be used to
aéi retrieve the data for multiple tools rather than using tool
if specific code.
:{ The means chosen to implement a generic retrieval must
*t? be flexible enough to handle any changes to current tools
‘:3 and the addition of new tools. This is an extremely
EE important requirement because without it, modifying the data
;E manager to incorporate tool changes could become too
W difficult.
;:é As part of the generic retrieval method, the ability to
é; retrieve multiple levels of information needs to be incor-
L
& porated. The user should only be required to provide a key
: "j O
e 46
o
o
0

OO IN0 O AT
(3 2l M ot \.l.c'l‘n.:‘t -'t‘n'#‘t'i‘!.i.,!'\..u‘l ,:‘0 W00 u‘l'\'.c { X) L

LT OO L L ST AT UGS Y e e Tt)
9o » . L .' A A

%Y e ’

e S) Caad(]

)
via-)

TAA

LA

AR ("L L

-

B 2 Ll O BT Bl A S Ly B L - A P S SRARERVINEDY" - AN g Ny T T% Fy |
) ,'n't’. R Y (¥ N -"! DA N gy o o O‘ﬁl X a"’c ‘“ ol',b’o.ca. ot 2R ,A’H‘o,l‘a‘t':‘.l'

data name identifying the top-level value from which the
data entities are to be retrieved.

As part of the retrieval, a session control file needs
to be established which tracks the data entities selected.
This session control file must be assigned a unique iden-
tifier which insures no other tool could inadvertently
destroy a session which it did not own. The session control
file needs to identify the data entities used and their
update status. The update status can be set to read or
write if the entity’s owner checks it out, otherwise only
read permission is granted.

The session control file must also maintain other
information. It must track what tcol is using a particular
session and the name of the gsession owner. This information
identifies who has checked-out a particular data entity(s).
This capability is necessary so that a user could be asked
to check-in his session data for use by another tool or
user.

Throughout the retrieval process, errors may occur.

Any errors are to be reported to the user with a brief
problem description. If a data item can be identified as
the problem, its name is included in the error message. 1If
a data entity in a multiple entity retrieval causes an
error, it will be identified and the other entities are

transferred.

47

E'v.-o.-
r}- ol

Y

3, XK.

-~ -

P

Al .‘l l“—
2 e By By e

".('n"lsl {

-
3y
«

W -

_,1
PN =

L

@

S

P

?.¢

-
. ll .‘

vl

Y

~

G & R A,
R NS

e

. o Yo,
1.-'!'1' ."."-.

R L

»

©

,,--_,_‘,
@7

y ."k"n_"-_"n '

S WS

« A

PR

ol et & [Pl
e, o,

&

i'l
TSNS

gt

- =
wr

Chat ati

A capability which may be needed by future tools is the
ability to retrieve different versions of the same data
entity. Currently, the database does not support the
storage of multiple versions. Adding this capability is
beyond the scope of this thesis, but the retrieval method-
ology needs to be developed to support this requirement.

Database Update. The requirements for the data man-

ager’s database update function are very similar to those of
the data retrieval function. 1It, too, must provide a
generic means to update the database, validate update
request, and insure database consistency through session
control.

To support the generic data description of a standard
data file, a common representation, describing both update
and retrieval formats, needs to be developed. This common
data description would reduce the overhead of having
separate files for updates and retrievals and prevent the
problem of making a change in one file and not the other.
These files should be developed so that the update code,
like the retrieval code, can be common for all tools.

A requirement of the update function is to validate all
data files submitted for updating the database. There are
two types of updates received. One type is where the file
has just been created by the tool with no existing session
control file. The other type is the normal update where a

session control file is available.

48

wowr

Ay
LR

2.
L 37

S

An update created by the tool should contain only new
data entities. The entities are checked for completeness
and use of unique data names. Three fields are required for
any new data entity entry: project, name, and author. The
project name is supplied by the user interface file. Name
must be supplied by the user because it is part of the key
for every relation in the database. Author is required to
show entity ownership because only owners are allowed to
modify an entity.

A regular update request uses the standard data file
and the session control file created during the retrieval
transaction. The session control file contains the status
of each entity and validates whether the user owns the
records he wishes to add, delete, or modify. If a tool
cannot show an entity’s update status, the session control
file is used to direct the database updates. New entities
are added. All entities in a write status are updated.

Entities which were not included in the return file but were

sent to the tool are retained in the database. Only

explicitly identified entities are deleted.

The manipulation of data by various tools and the
transmission of data files by data lines introduce the
possibility for corrupted or invalid data to be submitted
for update. The data manager must be able to detect and

recover from such an occurrence. This requirement is

limited to invalid data. It does not require the data

= B
“. - . l'. ." .

- o

[l A

'#o“‘l“

” L

ol 4 4
&4
AL s

L Y5

i N
5{‘!’» BANS

.

19

, LN,
- {l '.:"..l ‘.l .. “

- v
&) .: '

AT
.. " -\l.?“ _.l't'“. ‘l-

« '

T\'.s.{j

EFEL @
. S a3 o8

B Nw \w ~-- -~ ../- ,‘1 5-- - o S -._,- .--‘_ .
AR R AL B! R TERT

e

44

manager to perform consistency checking between entities.
This is beyond the scope of this thesis and should be
implemented via an external utility.

If an error is detected in an update transaction, the
user must be informed as to what caused the error. If any
entity within a session cannot be written to the database,
the update is aborted and the database is restored to the
state it was in before the update began. This is necessary

to reduce the introduction of data inconsistencies into the

database.

Common Database

There are only two requirements for the common data-
base. The first requirement is for the relations developed
by Thomas (16) to be modified to reflect the additional
refinements made by Foley (4). The second requirement is
for a means to indicate the read/write status of individual
tuples within key relations. This requirement provides
support of the session control file and adds additional
information about the tuples for any non-data manager

trangsactions.

Summary

This chapter has identified the requirements for
integrating System 6890 tools. The primary components are a
standard data file and the data manager. The main require-

ments to be met are for the system to require minimal user

50

SRR R

YO input, provide basic data protection, and be adaptable to

s, s

x,
.,
5+

T V change.

;x3 Adaptability is the key requirement. The standard file
e must be able to pass data to any tool in System 680. The

v format used must support new tocols and changes to old ones.
The data manager’s retrieval and update functions must

) provide the same level) of adaptability, but do so in a
generic manner. As new tools are added and tool changes
occur, the data description method and developed code must
adapt without significant effort. Adaptability will be the
driving requirement in the following design and implementa-

tion efforts.

{ e

2]

e

--..
. t
Se @’
[&) .'_l_l.

U XA A AN AN
b e) AL

< 4

e
PR

-

" ..
. 'n..i -..!

51

I

Yy

TN e e e A T T e T e e T T e e e N e e R S L e T Y A A S T e
U "'"""""' VNS " ’ AYARNY + N J"\ L ‘ . 'r b 2% L B I

£

Dl i M

- n e .y

g 2

P 4

Pd T 0N 2 BT,

N FEI 2P

-

{
Al
ﬂ
»

RS AT A AT N
R PN N AR
'. ‘ﬁi‘-mh’ ."' y) .\ Y YY) NSNS

e < "l i N g s gt i 'wm"mT

IV, System Design

Introduction

The purpose of this chapter is to establish the high-
level design based on the common database interface require-
ments. Chapter III identified the required components and
functions which needed to be developed to provide the
database interface. The system design addresses the overall
structure of the interface and how its components interact.
The design selected is not the only one available but it
does meet all requirements. As part of the design, the
system’s transaction processing methodology must also be

established.

System Structure

The system structure is based upon the components
identified in the requirements. These components are the
data manager, standard data file, and common database. This
section examines each of these components based on their
function in the system and on their inter-relationships to
produce the overall structure shown in Figure 13.

Data Manager. The data manager’s requirements are
extensive. It must provide a generic means to perform data
retrievals from and updates to a common database using the
standard data file. It must support both batch and inter-
active tool transaction requests. Additional functions the

data manager must perform are session control and error

52

e tw PR, v, W, Y g T, T

Y TP Y “w
ERCACATD ol BN AT AT A W
R T

s

-

e
- L"

w—mmmm"w-u—u FETITVITRY Y T W R ARWVEITRIT A e

SEL il USER
TOOL

Standard
Data File
Tool Data
Definition
Tables
DATA Sessi
" sion
MANAGER Central Tables
Database
_/ Dictionary
Data
Request ISBack_-up
ession
Results File

res

S
creen File

Figure 13. Overall System Structure

recovery. These functions establish the bulix of the
system’s structure.

The design of the generic database access is the key to
the success of the data manager meeting the adaptability
requirements. The method selected to support this require-
ment was a tool data definition table (Ingres relation).

The definition table contains sufficient information to
retrieve the data from the database, build the standard data
file, and perform database updates using the standard data
file. The data definition table can be adapted to support
any tool and can be easily modified. Additional tables are
used to describe the various tools and any unique processing
needs a tool may have.

The tool-data manager interface is required to support
both interactive and batch transaction requests. The method
selected to support this requirement is the use of a Request
File which contains the appropriate data manager instruction
parameters. In the ideal case, this file would be generated
by the tool without the user having to interact with the
data manager, but this is not always possible. The current
System 690 tools cannot support this, hence the need for an
interactive interface as well. This interface will build
the Request File interactively, so the data manager only has
to support the file interface. An important part of this
interface is the reporting of the results of any transaction

request. The data manager provides the results to batch

54

e W e AN AN ’w.""': .'!:'-;\‘["'.':'v}'-ﬁf:&'d

i)

Oal’s
l"‘l.

e transactions via a request Results File. Interactive

{ transaction results would be displayed to the screen.
The session control function is dictated by the

requirement to control access to the data. The control

g [=
SRR
L

3
-

function occurs in two parts. At its basic level, session

W

1? control must prevent the inadvertent modification of any

.j data entities by any user other than its owner. The second
g; part of session control is identifying and tracking data

:j entities which have been "checked-out"” of the database for
?: modification and supporting the data manager’s update

function when the entities are "checked-in" to the database.

AT Y

The use of Session Control tables (Ingres relations) was

- selected to support this function. As part of the session

A, %

oL ———
s
N

contrcl function, a back-up copy of the generated standard

Sl S

file is generated. This file is to be used by the error

1

ru
ol SN

-

recovery routines to restore the database in case of severe

i: errors when the data is checked-in.

'f The final required function is error recovery. The

‘: data manager maintains simple database consistency by not

o allowing incomplete or incorrect updates. 1In the case of an
error, the data manager is required to restore the database
back to its state prior to the transaction. Error recovery

J? during a retrieval would be minimal because the contents of

‘? the database have not been altered, but update errors

.3 3 require more extensive procedures. To recover from such an

? iﬁ? update error, the back-up session file is used to restore

:)

' 55

2

y. N

" N Y Ny 5 \,‘I-\,' -ﬂ}-:x _(\ AT L UL, \ A "'\ MR CAL '7-\’_‘--. "y " -.‘R-\ '.\ '-_ St

‘...*.. (A A 0'.\’. U.‘.."il‘t () |0.. ’ g n.‘ gl. ‘. I. 8 'y .’b.' v. B Iw"l’ .' l. Rt ;{ \' (} Ut Bl 24 '

-

()

e e e o

\;

~

}3 ;E} the database because it contains the structure of all the
iJ . affected entities prior to the update.

ey

i; Standard Data File. The standard data file is the data
‘g interface between the tools and the data manager. 1Its

“ contents are dictated by the requirements. Every standard
f§ data file contains a file description header and the actual
Fz data entities. Note, however, that only the structure of

(the file remains constant. The actual contents of the data

elements and their order varies from tool-to-tool and phase-

AR

Lo

to-phase. The data manager maintains the element’s order

and contents using the tool data definition tables.

.,

Common Database. The common database is not affected
in the design process except to support the addition of the

data manager tool data definition tables and session control

P
]
2tats?s

tables.

INOND
L l‘

Transaction Processing

X
e The system provides a common database interface. As

AN such, the transactions that are processed will involve

",

e either the retrieval of or the update of data. Within the

o . . N
- two transactions, there are four basic types: retrieval

\‘:

3 only, new write, retrieval for update, and write with

? update. The first two types are performed individually, but
T the last two are combined to form a session. This section
- examines each transaction type and their design considera-

a

[] .

AN tions.

. .

)l
L

o 56

[)

e e e 1 et e P S e e 2t et e r e e R

X
- /':'

Retrieval. A retrieval is a read only action where any

user may retrieve a data entity. The entity is not included
in any session control relations because the entity may not
be updated via a retrieve only transaction.

New Write. A new write is the result of a tool
generating one or more new data entities to be written to
the database. These new entities are in a standard data
file which the data manager uses to perform the updates.
Upon receiving a new write request, the data manager will
need to check that none of the entities in the file current-
ly exist. This is to prevent the accidental corruption of
existing data.

Session. A session is the most comprehensive trans-
action the data manager must support. Each session consists
of three steps: retrieval for update, tool manipulation of
the data, and write with update. The retrieval for update
retrieves the requested data entities into a standard data
file (session file) which the tool uses to manipulate and
modify the data entities. After completing its modifica-
tions, the tool submits the standard data file to the data
manager for writing. The data manager monitors each session
using the session control files to track the entities which
were checked-out and the user’s name. When the session file
is resubmitted for write update, the data manager needs to
check for any invalid updates. 1If none occur, the session

igs terminated and the data entities are checked-in. I1f an

"l o &

1Y

'l .' ..I ‘: ‘l"i-
P N N L

san
'i‘,;‘.‘ ‘tn."d,l. O"

el

h RN
A

R

A

e

%

'S

e

At

L e

5

-

'._11“}

‘4

Pt
e ¢
4 s

ATt S
AN

e L O e M e A ' e
O.t LTS N N M 1‘0-1‘."‘ O W -'G"l" e "i'it ‘- Ol

error is encountered, any updates made by the session file

are removed and the session back-up file would be used to

recover the database.

Summar

The purpose of the system design was to provide the
basis for the detailed design specifications for a common
database interface. As shown in Figure 13, the key com-
ponents are the tools, data manager, standard data file, and
central database.

The importance of the detailed design is to not just
show the components, but to identify how they interface.
Also shown are the work files and relations used by the data
manager in supporting the generic database interface,
session control, tool interface, and error recovery. The
detailed design of these components, files, and relations

are provided in Chapter V.

58

o R)

(S I R R R A R LD U U R .'_'-d_'.._‘n- ‘.‘_‘-'_\
W, T e oI v-(‘-,;_ ._-r._\ <Pl TN Y e,

G 3G MO Chi™

Loe e e

V. Detailed Design

Introduction

The purpose of this chapter is to provide a detailed
design of the components gpecified in the system design
chapter. The major components identified were the standard
data file, data manager, and common database. Within the
data manager requirements, four key sub-components were
identified. The first was a generic tool data definition
table. The second data manager component was the tool/user

interface. The third was a means to support session

control. The last component was a means to recover from
errors. The design of each of these components and sub-
QLZ components is presented in this chapter.
10

Standard Data File

The standard data file serves as the primary interface
between System 630 tools and the data manager. The require-

ments of this file indicated that it should consist of a

file description header and a set of formatted data entries
containing the required data elements. This section
examines the design of these two components and their

overall structure.

File Description Header. The required contents of the

file description header were identified as the following:

session identification, tool/file compatibility header,

S ;f% project, phase, type, data entity summary, and start/stop
8
k 4'\.

;:- 59

A

'y

o

5 »
L % % A

-

<

—

o .-‘el -

WA~
vy

- » o

- Lan WP vww,
(el tNE: XY
PP Vo DN

EAPP P

i

SR

e TN
2 27

PERE

a
‘.)

PaLals
= "'1.54!-’15)

.. S Pd
A.
ERRRRR-L 4

A 2

i time entries. These required fields were combined to

produce the file description header (Fig.

standard data file.

14) used in the

SESSION ID
TOOL ID
PROJECT
PHASE
TYPE
START TIME
STOP TIME
LIST OF ENTITIES:
N Name Type Status
Ve : ; :
Na;e Tyﬁe Staéus
Figure 14. File Description Header

The requirement that the standard file

Format |

be used by both

tools and the data manager places certain demands on the

design and use of the header fields. The general issues are

addressed below with the detailed field formats being

discussed in Appendix B.
Session Identification. The sess
tion contains either the session identifie

data manager at the beginning of a session

ion identifica-

r assigned by the

(retrieval for

e

e
AP
Lt
i

R

‘2@ 'I

P
efat
s '

Lt e e e e e s e e .~ p o R S RS R R P T TER RN
nle NI Pl o Ll PRI "\""V-‘_{(I~ Y \'"\‘n.'.'*r A -‘.f‘,n PRIy '\‘J'J'

update) or a standard entry indicating the file was built by

the toocl. The identifier assigned by the data manager is
used to control database updates and must be unique for each
session file to prevent using the wrong session control
information in controlling a write with update request.
Because of this, the tocol must maintain this identifier for
later submittal for database updates. The standard entry is
used when the data file has been created by the tool to
enter new data into the database. The standard data entry
is constant for all tools and the data manager will expect
this entry for new writes. Without a valid session iden-
tifier, assigned or standard, the data file will be rejected.

Tool Identification. The tool identification code

is needed by both the SEL tocols and the data manager. A
tool can use the tool code to verify the file contains data
properly formatted for its use. The data manager uses the
tool code to help determine the format of the data entities

within the standard data file.

Phase Indicator. The phase indicator will contain |
only one phase. This method was selected even though some
tools may require data from more than one phase. The single
phase per data file allows the different phases to be
contained in separate databases residing on different
systems. The data manager cannot manipulate data across
systems in a single session. For this reason, a separate

data request must be made for each phase.

61

g ISSATASANINEY,

L W BV By T B WY

is

X, %
P ok ko al &

ot
":'
o
?& -ﬁ{i Type Indicator. The type indicator designates
?-* - whether the data entries in the file are action, object, or
'Eé both types of data entity. Since all can be handled, this
i%ﬁ is needed only to allow more efficient operation of the data
{‘. manager.
kﬁ Start/Stop Times. These times are initialized by
af the data manager but the tool provides the actual values.
g The start and stop times represent the total time used by a
’;E tool during one session. The method used to generate the
::E entries are tool specific to allow for the most accurate
!: representation of a tool’s specific usage patterns.
i% Data Entity Summary. The data entity summary can
EE . congist of multiple entries. Each entry contains the name,
‘, 0-. type, and status of each data entity contained in the
.éz standard data file. The entities are ordered by type with
,:& all action entities occurring first, followed by the object
?2‘ entities. This grouping was selected to ease file handling
iég by presenting a consistent ordering.
b,
:t The status entry indicates the status of each entity in
o the standard data file. The acceptable statuses are read,
é; write, and delete. The status of an entity is determined by
f: its intended use and whether it is in a standard data file
‘i? generated by a tool or the data manager.
;i; A read status occurs only in standard data files
'ii generated by the data manager. This status is used when a
zé ég} requested entity cannot be updated in this session.
o
e 62
>
» .
o .y N A Y R R R R N

\ W ot J ! ¥ .
s O AL e SN AR Sl R NG A s

J‘'J,I,)_I!i‘

(S

CODERORY 4

R d -
N AN
’-.-'." .

AADOL

-

A 1o

PP
LRV S &F « [

'?'l"l v

L]

Iy

f v A -
LA T YRR

o _K_ 4
e,

Ay Je

A write status can occur in either a tool-generated
standard data file or in one generated by the data manager.
All entities in a tool-generated file are in a write status
because all the file entities are supposed to be new. There
is no need for any other status in a new write. 1In a
standard data file generated by the data manager, the write
status indicates to the tool that the data entity can be
modified.

The delete status occurs only standard data files
generated by the data manager and modified by a tool. The
delete status allows a tool to delete entities during a
session.

Because some tools may not have the sophistication to
indicate the status of an entity, the data manager assumes,
on new updates, that every entity in the file is submitted
in a write status. If the file was checked-out, the ap-
propriate session control files are used to control the
updates when the standard data file is checked-in.

Data File Entries. The data portion of the standard

data file consists of one or more data entity entries. Fach
entry is composed of all the data elements necessary to
satisfy a data dictionary entry. The data elements are
contained in a series of data records (Fig. 15) and consist
of the fields identified in the requirements. The file
contains the data elements for all entities identified in

the file description header entity list, except for those in

63

a delete status. The ent . ties marked for deletion do not

have a corresponding set of data records in the standard
data file. The general design issues for the data entries
and the overall entity structure are discussed, while the
detailed field formats are addressed in Appendix B.

Data Name. The data name corresponds to the data
element’s attribute name. A tool returning this record must

have this name correct or the data manager will reject the

entity.
DATANAME
FIELD LENGTH
MULTI-LINE INDICATOR
NUMBER OF FIELDS
DIRECTION
TYPE
CONTENTS
Figure 15. Data Element Record Format
Field Length. The field length entry contains the
data element’s maximum Ingres field length. The requirg—

ments indicated the need for this to inform a tool the
content’s length to allow tools with varying field length

support to manipulate the entries.

64

NG

"

3 ‘{fﬁ Multi-line Indicator. This field contains either
?' - a Y or N to indicate that the data element is part of a
-5 multi-line field.
‘gi Number of Fields Indicator. This field contains
v the sequential identification number of single-line fields
;3 occurring within a group field. The numbers are in descend-
“S ing order to allow a tool to know how many fields to expect.
.
(Direction and Type Indicators. These indicators
'§3 correspond to the direction and type attributes of certain

P

23 data elements. These fields are required to form the data
2; element’s key. Because of this, the toocl submitting the

§; file must provide the proper values in these fields. 1In
kg‘ e entries where these fields are not needed for database

=
L

. access, the field, while present, is ignored.

i

- Data Contents. The data contents field contains
-'_:

o the data element value. The field may contain up to 60

O

o characters. This limit was selected because of the Data

ij; Dictionary Editor. The editor is the most heavily used tool
fi and cannot manipulate fields longer than 60 characters (16:
':E 57).

g

:E Entity Structure. The data element records within
1%% an entity have a specific order. The first element record

1:? in an entity is the entity’s name. The name occurring first
.%E was selected because it is standard for all data dictionary
if entries and it provides a quick means to identify the entity
E; i;? name of the data elements. The order of the remaining data
o5

[

S e
ot

3

~

i

i- :ﬁ? elements is dictated by the tool’s requirements. The

fr o ordering is controlled by the tool data definition table.

E; The order of the data element records must be main-

:Ei tained upon submittal for updates. The data manager expects
f(the data elements to be present and in a specified order,

_E; including empty contents fields. If a data element is not
‘r: present the file is rejected. The purpose of this is to

f” prevent posting any incomplete entities to the database.

;§§ Data File Structure. The standard data file structure
;Eﬁ (Fig. 16) is built using the file description header and

3. data entity entries. The file contains all ASCII characters
»E; and consists of the file description header, data entities,

LR

<

and section delimiters. The delimiters are unique for each

—y,
2
oy

section and are designed to help the tools and data manager

L a4

maintain their position in the file. The delimiters also

"n'l"‘l

P

help tool developers read the file’'s contents for debugging

s
-

r? purposes.

ié Data Manager

é The data manager is the key to providing an integrated

~§2 environment within the Software Engineering Laboratory. The
;ZS primary components of the data manager are the tool data

‘!; definition table and the tool description table. These

N

%g tables permit the generic classification of the entities

ES used by the tool. These tables are used to support the data
:; \:::2 manager’s two primary functions which are to perform the

g B database retrievals necessary to generate the standard data

o 66

]

N

.- . . O S S S S A LT et AT AT T R TR T
T e e e S e e e e e e e T e e e e e T e L T e e .I*,*-.H D _‘-",‘“, .,\-4 ,‘-«",\4_ qh_rhf\bk’\. ,._-I‘ -('{J*\-r\._ .
. I - Sy PN '. Mo =R e g)

e aim alg ioh sos 4 g ek S A A S8 A0 Bb ad A ik B ded bA Md tad od bl Red dobh Aok Ak defl dok dekdaldn L ank el ol Aol

AN
oy NN
{ #@@BEGINe@#
20 #@$HEADER BEGIN#e#
N
::j <{file description bheader, Fig. 14>
K. #@#HEADER END#e#
v ###ACTION TYPE###
W
S @##START##@
W
o)
5: <entity element record, Fig. 15>
s
! @##STOP##@
o o
,.-‘ O
./"'
o0 °
d $22ACTION END##¢#
N
*I
;S ###0BJECT TYPE###
i
YA @##START##@
1 “a
&: o ¢entity element record, Fig. 15>
@##STOP##@
: o
:) o
s o
&
'; .;: ##30BJECT END###
>
0, #@@END@@#
e
o
‘i; Figure 16. Standard Data File Format
S,
®.
,f file and to use the standard data file to perform database
;ﬁ updates. A tool/user interface is also required to control
S
K the actions of the data manager. The design of the tool
A >
O data definition table and the tool description table are
N
e
N
X 87
L
S T S S D e AR I e P ARG

]
oA d

»?
[Ay Ay aF &

-~ "
EaNE

Ao

'y

LY

-

—y e s

e

CAERESE =
i~

3N
W t'.l“-' ‘

L

[}
- A\

©

2

-

*y " ,' e
PO U
tatale

A, 3
)

examined first. The three data manager functions are then
discussed. For additional details concerning the data
manager and its interface, reference the User Manual in

Appendix C.

Tool Data Definition Table. The data manager require-

ments identified the need for a means toc support the
retrieval of data dictionary entries, formatting the
retrieved data into the standard file format, and updating
the database. The method selected was also required to be
flexible in design to incorporate current and future tool
data requirements with little or no programming. These
requirements provided the basis for the following design of
the tool data definition table. For detailed field formats
and values, refer to Appendix C.

Table Usage. A tool data definition table
contains the information necessary to describe a single data
entity type to the data manager. The table is tool, phase,

and type specific. Therefore, a tool using both action and

oy object entities within a phase requires two data definition
‘:i tables, each with unique relation names, to describe its

,E§ data entity formats.

f;d Table Format. The primary issue in designing the
f:& data definition table (Fig. 17) was supporting the data

iﬁ; manager’s database transactions. The table had to provide
‘;&:) sufficient information to access a data element. The

ﬂ&: E;i minimum information required is the following: data element
o

= 68

® ¢

o

)".1.-0 AN N PO '-.:.:‘;.-r.;.;.\a AR~ LT CAe - ' - : T -' '3:* "’ o "R VT W% TR i AT 0

N-’.,-‘ K (N ol o By Dfiied L e LB

_53 .fj: name, element’'s relation name, relation’s key names, and the
'_ entry classification of the element’s relation. Each of

these items require one or more entries in the table and are

e discussed below.

>, The data name, relation, and key fields each contain

\ -

;E the appropriate Ingres value needed to access a single data
e

N element. Data name also corresponds to the data name entry
™

; in the standard file data record. Relation is the name of
[} '.."._'

;{ the relation containing the data element. The key fields
o

? DATANAME RELATION KREYFIELD_ 1 KEYFIELD_2

-5

0;: oy
(' 6 : FIELD _DESCRIPTION ENTRY_CLASS MULTI_LINE_INDICATOR
~\~'|'
N

o

e NUMBER_OF_FIELDS DIRECTION TYPE

b’

J';:

.»,:{

:f DELETE_FLAG VERSION LINE

Y

®

o
o Figure 17. Tool Data Definition Table
NN .
3, "-.
v

:- are the attribute names used in a relation as keys. For all
?E current tools, only the first key field is used, but a
lii second key field was provided to support future tools which
-

N7 may require it.

8.

oa AT

e T

N

e

1:' 69

. .
NN

"N i AN e ‘w-_:.:_:.r ORI o8 ‘4~;a,:f:,;d-‘-;;;~ i ‘ _\‘.:'.n ‘_ _“ X ‘;“’ ‘ -:-;‘_".:' oy f?-

- o Y, -

crt.e T,

‘-'—”’-.'v"-"»'.h-\.~ ' -"-\'A .

The data definition table entries just identified
supply only a portion of the information required for data
retrieval and update. Information describing the data's
relation structure is needed to perform accurate and
efficient database transactions. The entry class field
performs this function. By classifying a data element’s
relation, the data manager can perform its database accesses
according to class, eliminating special coding for each data
element. The use of entry classes is the key feature of the
data definition relation. The relations used in the various
data dictionary entries fall into general classes. By
classifying a relation by its structure and not specific
code values, the amount of code required to read and write
information is greatly reduced. Furthermore, new relations
can be added to the database by either creating a new class
or by using an existing class. This flexibility provides
the generic capabilities identified in the requirements.

The direction and type fields are used to aid the data
manager in accessing data elements whose usage is determined
by its direction and/or type attributes. The paname data
element, contained in the processio relation (reference
Appendix A), is an example of such an element. The direc-
tion and type field values are used for database transac-
tions and in the direction and type fields contained in the

standard file data elements.

70

NP T I N RN ST
TNl -

e
«

(Y CHR, v e P g v wd } . facAd . i A ot At h Al Kol Sul Ball Bl Il

b

“‘:

g

;g o The delete flag indicates which relation names and key

',V e fields to use in deleting the elements associated with a

'Ef data entity. Only a limited number of the table entries

%EE have to be marked for deletion because several table entries

n$; may correspond to a single relation (ie. ALIASNAME, COMMENT,

A A

i; and WHEREUSED in the paalias relation). This grouping uses

:% the same relation and key field names for a deletion. Using
the Ingres delete command will remove all associated tuples.

’ég Another reason this method was selected is certain entries

EE in the data definition table are not a member of the

A?i entity’s type class but are needed to provide a complete

5

E; data dictionary entry. An example of this are the SOURCES

E;§ . and DESTINATIONS entries in a data item data dictionary

g_ Ne entry. These fields are part of the activity entity and

tg; cannot be deleted by a data item transaction. By marking

w

these entities as non-delete entries, the elements may be

O%

used in both types of dictionary entry.

-

:is The version field is used in accessing data elements
:22 which have multiple versions. The entry contains the

»g: attribute name used in a tuple to identify the version of
o

:ﬁi its contents.

'E? The number of fields entry indicates how many elements
j; are to be retrieved from a single tuple. This entry allows

1%; the data manager to access all the data elements in a

; relation with only one tramnsaction versus one for each data
S

'?f 71

e

-
I~ . : :
;&EE ;Eé element. The number of fields is also used in the standard
“‘; o file data record.
20 The field description and multi-line indicator are
N
iéﬁ provided to support the generation of the standard file data
V records. Certain tools (i.e. Data Dictionary Editor)
)
i;ﬁ require these indicators to structure the display format of
S
fﬁs the element.
f;: Element Entry Order. The order in which the
uéa various data elements are written to the standard data file
-
§§§ is based on their order of entry within the tool data
.S:: definition table. The data definition table allows the
baé elements in a relation to be split in the standard data
e
:Eﬁ: o file. To support this, the data manager will have to
{‘ ; ‘. perform multiple retrievals of the same relation to get all
;:j the required data elements. This introduces inefficiencies
@3&2 into the data manager but eliminates the requirement of a
Eﬂﬁ tool needing to know the structure of the database.
3& Tool Description Table. The tool description table
R
‘}ﬁﬂ (Fig. 18) describes a tool and its data needs to the data
;:f manager. The description table is used by the data manager
iﬁa for transaction request verification and database retrievals
%{5 and updates. There is a tool description table entry
'Ei? identifying the tool data definition table for each phase
;;é; and type of data entity used by a tool. This is required
‘3§ because a data definition table only describes a single data
53?3 é;; dictionary entry.
Ay
et 12

)

P AT AN A AT

AP Sl Tl Re G - (. k (P
R b » p N ¢ vl
POV et Wi Tl e e et ottt

mRAETVEV RS TR T EVET

R
i

rad
,:',
o
.:,‘\ -
S
1 TOOL_NAME PHASE TYPE DEFINITION_TABLE | DESCRIPTION
. '
c) ‘y.l
e
o Figure 18. Tool Description Table
¢ -
A
N The tool name contains a code which uniquely identifies
kﬁg a tool. The same code will be used for multi-phase tools to
K h‘\'r:
; prevent having the tcol submit a different code for each
LY
.\g phase it uses. The tool name, phase, and type fields are
\"}
:E used to identify the specific data used by the tool. The
e
e
. definition table field provides the data manager the Ingres
L]
:: relation name identifying the appropriate data definition
IO\
:i: table(s) to use in retrieving a tool’s data entities. The
{" %S- description field provides a means to better identify a tool
isi and its use and is for documentation purposes only.
1N |
“i? Tool/User Interface. The toocl/user interface provides
),)."-a I

the means for tools or users to perform database transac-

O 53

§§§ tions. The design of the interface addresses the format of
&ﬁ a tool data request, the types of interface options to be
:ﬁ made available, and error reporting procedures.

_Eé Tool Data Request. The requirements for the tool
;Sg data request contents were established in Chapter Three.

s

i; These requirements helped determine the tool data request
:§f format (Fig. 19). The entry requiring further clarification
;;i is the transaction indicator.

lVﬁ) The transaction indicator informs the data manager of
%$§ e the types of actions it is to take. The system design

b3 73

»
!’“&f"‘f"‘ ‘r*‘a.\f‘ -’7.‘;{'_-[‘.!‘#:#" ™y "r'*\ 'i."f
B s A e e S S o o,

TOOL IDENTIFICATION

~
s 2P

‘: ‘: ..;'.",

DATABASE NAME

PHASE

»,

N TYPE
i g
o

) PROJECT NAME
o0t
L) FILE NAME L
¥
A
"' 2 OWNER NAME
> .0
P TRANSACTION INDICATOR

)-‘:‘,:
"“' SESSION IDENTIFIER
- PARENT
&;J
e LEVELS
NN .
((o LIST OF ENTITIES:
SOS Name Type
‘0 o o
ey o o
';
2
Ao
‘\":: .
o Figure 19. Tool Data Request Format
A

L

W identified four types of transactions: retrieve only, new
0
,;: write, retrieve for update, and write with update. These
‘-d A\l
o,
e four transactions perform all the required transactions but
0.
A two other transactions were identified which would improve
D w7
:'3', the data manager’s "user-friendliness".
s

. b
i The first transaction added is the delete function.
-

._:Q "_.:-;:- This allows a tocl/user to provide the data manager a list
ey

e
&

9 {

o
B 2y R s AT NSO <o LI L oL YL T T HV o oM A R R M TR R ML o, o ™Y

20 LA T A x G S ARV O ORA 010y by DI b, ‘
KRIOR H) IO KPR MM 1 0!:‘ ,3&!.’5 MR 'x" B, p X IO ..:':'t :'o".'.'\ ODCICTION0 o bt ottt

%

!

’

&

.7,5.‘,

"~

of entities to be deleted without having to retrieve them

for update, changing their status to delete, and resubmit-
ting them for write with update.

The second transaction added is a session abort
function. This was added to allow a user to abort a session
without submitting the session file. This transaction was
added for two reasons. The first was to support easy
database maintenance by providing the database administrator
a means to delete old sessions. The second reason was to
allow a user to delete a session in case the session file is
corrupted or lost. As part of this transaction, the session
identifier is required to identify the appropriate session.

Interface Design. The data manager is required to
provide a user the option of using either an interactive or
batch interface. The interactive interface will provide the
user a series of menus toc build a transaction request file
(Fig. 19). The batch interface is provided to support tocol
generated transaction requests. The batch request and the
interactive request files both have the same format.

A design decision was made to implement the interactive
interface in a separate program. This design allows the
data manager to process interactive and batch transactions
the same way. This common interface simplifies the data
manager design by eliminating interaction with the user

during transaction processing.

« ; X
N, A

PR A o

P)

-
oy N

=
¥ .

)
14
‘»
S
e
N
q
)
B
A =
8]
¥l
. !‘" s-‘
4 &
-
o
s
K
Y
~
AN
{
&4
2
'
o
H «
kS
A
q
v
[7
5
s,
Y
4
N
AV M
¢
)
Yy
4
L
‘ »
‘.‘i..".h

Results Reporting. All transaction results are
reported through the use of a results file. The results
file name consists of the transaction request file name with
a .res extension. The results file will contain the list of
successfully performed transactions. 1In the case of an
error, the cause and error recovery results are placed in
the results file. The exception to this is during interac-
tive processing when the results are displayed directly to

the screen.

Data Manager Retrieval Function. The data manager

performs all the data retrievals required by a tool. To
perform these retrievals, the data manager must validate the
request, provide session control, identify the data entities
to be retrieved, retrieve the data, and generate the
standard file. Each of these functions is an important
design concern.

Request Validation. Request validation occurs in

two steps. The first step is checking the validity of the
transaction request (Fig. 19). The second step is determin-
ing if the requested data entities exist.

The required transaction request entries are dependent
on the type of transaction being performed. The entries
required for any transaction are the tool identification,
database name, and owner name. The other entries are

transaction dependent.

76

T o S A R R v P sx*.“" W AR
. w» .) bl -
AN W !’ NA .'-‘f‘n‘ c., W, ,.l '. q’.) ‘n"‘n"‘ 'c' 'ﬂ,‘a n o‘!‘ﬂ?‘c’." N R R R S GRS RS o AU e .‘n'

--;‘-\

.\aah'wa

NN

p—
5558 N

ARy |

. ,‘_r‘ .

55S

AN Tl

=

.
R Y YAk

ey

‘"o rrrsrldmi,

The retrieval entries are the session file name,
project name, phase and type of data, and the entities to be
retrieved. The write transaction has the same required
fields but does not list the entities because the entity
list is contained in the standard data file header. A
delete transaction uses the same entries as a retrieval
request. A session abort transaction only requires the
session identifier.

The transaction entry validation checks are limited.
The tool identification, phase, and type are checked against
the tool description table for accuracy. The other fields
are checked for their presence. Any errors enccuntered in
the validation generate an error message and cause the data
manager to terminate. If no errors are encountered, the
existence of data entities identified for retrieval or
deletion is checked. For other transactions, the data
manager by-passes the existence check and begins processing.

The data existence verification insures at least one of
the requested data entities exists. The transaction may
either identify the data using the parent and level fields
or the data entity list. These are mutually-exclusive
entries. If a multi-level retrieval is requested, both the
parent and level fields must be present. If the multi-level
fields are not used, the data entity list must contain at

least one entry. If these conditions are not met, the

77

request is rejected. Otherwise, the presence of the

requested entities is checked.

ﬁf The data existence verification insures at least one of
~,
ﬁj the requested data entities exists. A multi-level retrieval
2
')

uses the multi-level transaction table (Fig. 20). The tool

[ors

Faw

Py

name, phase, and type fields correspond to the transaction

»

[

e
‘S request entries. There are three types of multi-level
a2
. request. The first request type is for a retrieval of both
A

gL
;~: action and object entities. The second type is for a
Y
:c retrieval of only action items. The third type of request
?\ is for object entities only. These are hierarchical

s
Lﬁ? retrievals based on the number of levels. A tool may
\','
o ‘@» request no more than the number of levels allowed in the
¢

®

E;) multi-level transaction table.

R‘:‘j

£
Qf‘ TOOL_NAME PHASE TYPE LEVELS PAR _NAME PAR_REL
b,
e
L
”;—‘ PAR_KEY | SEC_NAME | SEC_REL | SEC_KEY

it

@
il

e

"

ﬁ; SEC_ALT_NAME SEC_ALT_REL SEC_ALT_KEY

Jl.l

oM

o 7

By
;ﬁf Figure 20. Multi-Level Transaction Table
=
Yﬁf
oW The multi-level transaction table supports a single

), _
TR entity type (action ar object) retrieval via the parent
ﬂ:i) relation information. The secondary relation information is
oo

o 78

o

;$

o DA Y PN e W " M) RN TS T »

: R LN e e o o TR DL TR AT T AN

Wtle, L U

oY
:ﬁ, N used for retrieval of both entity types. The secondary

ey T information is used to retrieve the objects pointed to by
;EE the action parent or vice-versa. This mechanism supports
::é the bulk of the retrieval request but the situation can

}) arise where an action entity points to objects contained in
;% more than one relation. To support this, an alternate

;;§ relation is provided. An example of this type of use arises
(in the design phase. The objects pointed to by a parent

-Eg process are contained both in the processio relation and the
&EE papassed relation. In this instance, all the table’s
:il relations are used to retrieve the information.
’ig A key design decision was made not to support the
;Eﬁ o retrieval of an entity’s aliases. Alias retrieval is not
(_ Yo supported for two reasons. First, the use of aliases is a
’E; poor software engineering principle and is provided in the
e
t;i data dictionary only to support the occasional problem which
E?_ arises when two large systems, both using a similar function
’2; but with different names, are combined and the effort to

e

o;i change one system’s references to the entity is too exten-
o;% sive to be warranted. Second, both the data manager and the
.;& tools would require a much higher degree of sophistication
.

’;h to resolve aliases. The effort to develop this sophistica-
{3& tion versus the benefits derived dictate that alias retrie-
K :E val not be supported.

u:' To show how a multi-level retrieval is performed, a

‘éé ;ii sample retrieval of an activity and its data items is

f::;

: 79

0.

%

N B N e S RS

".

\

\
WS
‘
‘
' -
-

' n

-
14
LN

o

b

.

>

¢

)

-
N~

K »

1 =)
(Y
b 4
L)

).

S

)

o

o

N

‘el

‘£

¢

»

h’

(]

3
K.

L~

|
RN
4 l"n"\-l'
J 5 N
Y

‘l

k)

L Y

q

&

P

oAk " -')-

Ao, l'lﬁ.l L 2

—

presented. Before examining the sample, note it is only for
the requirements phase. Different relations would be used

for the other two phases.

SAMPLE:
ahierarchy activityio

project project

hianame diname

loaname aname
Parent Name : loaname Secondary Name : diname
Parent Relation: ahierarchy Secondary Relation: activityio
Parent Key : hianame Secondary Key : aname

The transaction parent value is used as a key (hianame
= "parent value) to identify all the parent’s subordinate
activity names (loaname). These names are placed into a
list. If the number of levels is two or more, these names
are then used to retrieve the next level of subordinate
activity names. This process is followed until the re-
quested number of levels have been retrieved or there are no
more subordinate activities.

The list of activity names is used as a key (aname =
"activity name"”) to retrieve the associated data items
(diname). After the activity name list is exhausted, the
data manager uses the activity and data item names to

perform its retrieval functions to build the standard data
file.

tNOTE: The above example was for a retrieval request.
The multi-level transaction table can alsoc be used in a
delete transaction. This provides a means to easily delete
an entire level of dictionary entries from the database
without having to explicitly identify each activity and data

item.

The sample showed a typical multi-level retrieval for
both entity types. A key aspect of the retrieval is the
selection of the parent and secondary relations. In an

object only retrieval, the dihierarchy relation would be the

parent and not activityio.

80
p r,r , NAE R R iy AR LERLLE TS S TR RIS SR, W Mﬁ‘,"‘.r AV
u 8 .’" ., o AN .’0 M ,Q"fo.‘.,.o'i. .0 l.l:! KX a. W t‘ SAOSCALA al". N |¢ L ‘()’ AR SN ‘)

3 " L o Thd e et M ol atl A 450 aih o o d o' 8 ath a i ath At

'\ @}h Session Control. Session control is an important
N,
part of the data manager retrieval function. The retrieval

-? portion of the data manager determines the status of all

:2 requested data and generates the session control informa-

"l '

v tion. This session information is maintained in two tables:
:} session entity table and session identification table. This
K \':

,:: section examines the two session control tables and the data
“I-.
{' manager’'s use of them.

)

) Segssion Entity Table. The session entity

N

\ table (Fig. 21) is designed to track each entity used in a

A)

S session, its type, and update status. The session id

AN

B

;: corresponds to the associated session identifier.

<

s:;_ e
| e

oA SESSION_ID NAME TYPE STATUS

Y

X

(ﬂ

L

V.

Figure 21. Session Entity Table

2EE: ()%

The name and type fields reflect the data entity’s name

*f. and whether it is an action or object entity. The status
& bl
Y.]
) reflects the update status of the entity. If the session
[5
ap
- owner also owns the entity and the entity is not checked
:j out, the entity is placed in a write status, otherwise it is
® placed in a read status. Entity ownership is based on the
-
)
e entity’s author name and the session owner contained in the
P
s\ tool transaction request.
»?
b
&).
"'- 81
@

So%

-

&
P,

[
) _.:-_:
';: e Sesgsion Identification Table. The require-
b e
\ * ments identified the need to maintain the status of a
R~
=:§ session, describe the type of data used in a session, and
o
it: identify the session’s owner and tool being used. To
o
) satisfy these requirements, the session identification table
2l Tl
o (Fig. 22) was designed.
'ﬁ;
!
2 PROJECT PARENT _NAME LEVELS PHASE TYPE
.Fﬁ
2350
R
N
2
R, SESSION_ID OWNER TOOL
e
n-‘.
i
‘SO . . . os .
{ W:' Figure 22. Session Identification Table
3
‘Wmd The project field contains the project name, which when
'&‘
4 combined with the entity name, can access all the data
21- elements in the entity. The phase and type fields identify
N
s the data dictionary entry being used.
\ L]
N
[~ The parent name and level fields are for tools which
®
l&l require multiple levels of data to be retrieved. An example
G{E of this would be to retrieve all the activities and data
‘ﬂﬂ items associated with an SADT chart. The parent name field
0.
_% contains the data value used in the retrieval. The level
e
7 o
f?{ field indicates how many levels of data were retrieved below
]
e the parent level.
\ : "‘ﬁ“.::
::ﬂ: Co
) \:'.'
®.
) »
7
}'f' O T T o TR A TR I N I A I 4R R

RIS T W “ v -Im —’J' "aﬁ;- N m oy A PR "% ‘_.-. : £y .(‘\') < | % \ i
Xl ‘. .‘ 0-’-"‘ [A Ak Sl l o T " OOf l.'.J. ..b K} .!"!0. .l"‘:l"’:”; Q.. OO K X) 'sl': -"?.0..."

g
-
-

AT MU

-

o,

(i]
R A

Con v Ny
[y

The session identifier must be unique for every

session. Therefore, a date/time stamp is used to designate a
session. The format of the field is aMMDDYYHHMMS (i.e.
a09188708125). This format allows the session identifier to
be used as an Ingres relation name, providing a means for
future tools to create session specific relations based on
the session identifier without having to convert the
identifier to an Ingres acceptable form.

The owner and tool fields correspond to those in the
transaction request and provide an easy means to identify
the session’s owner and tool. This satisfies the require-
ment that checked-out data may be easily located. This
should facilitate group efforts by allowing the team members
to find needed information and coordinate with its owner to
check the data back in. These fields are also used by the
data manager in validating update requests.

During a retrieval transaction, the data manager is
responsible for updating the gession identification table
and the session entity table. The session identification
table entries are filled in using information contained in
the tool data request and tool description table. The only
field not provided is the session identifier. The data

manager will assign this value based on the current date and

time.
Data Identification. The data to be retrieved is
identified during request validation. The request valida-
83

S
v,.
e
:{E \.:Z'_::-‘ tion generates a linked list containing all the valid
i" " entities. This list is used to retrieve all the data.
:::: Data Retrieval. The retrieval of each data entity
-
:‘-\ igs controlled by the appropriate tool data definition table.
‘ The retrieval function is designed to perform all retrievals
,.ﬁ_t': according to the entry class. As each entity is success-
oy
::z fully retrieved, its status is updated in its status
(- attribute. This attribute occurs in the entity type
-;" relation, i.e. activity or parameter.
:.::,: If an error occurs, the data manager identifies the
;
_, error and records the error and its cause in the results
- file. The status of the data entities which have been
',: . retrieved to this point will be restored and the session
, 6-" control tables corrected.
,\ Standard Data File Build. The file description
: header is written to the file before any data retrievals are
performed. Once the header is successfully written, the
:‘_ data entities are written to the file. The entities are
J.‘ written in the order they occur in the header with action
." entities occurring first.
" To support error recovery in the update function, a
;' copy of the standard data file is created at the successful
!' completion of the retrieval function. The session iden-
- tifier is used as the file name. The file is deleted
_’j whenever the session of the same name is removed from the
;:; ‘%f session control tables.
»""f 84

AD-R189 628 COMMON DATABASE INTERFACE FOR HETEROGENEOUS SOFTMARE
EMGINEERING TOOLS(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON RFB OH SCHOOL OF ENGINEERING

UNCLASSIFIED T D CONNALLY DEC 87 AFIT/GCS/ENG/87D-8 F/G 12/5

2/

NL

3

==
=

N
©

I:

22

1
i 2
122

"
8 T

; 2 s v

o

=
i

CFRERRE

| -
- [
s s

rer

r
re

M MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

"v' ¥ Y &‘J’

)‘\»‘ -I\I‘l'o‘!’¢l' (,
4 =
Wit Py bg‘fﬁ.“*‘

Ry
%-
1:"
‘;ﬁ a Data Manager Update Function. The update function’s
SN \.:'_
y requirements identified the major components needed to
[
‘;ﬁ perform database updates. 7These components are request

o

\\i validation, database update, database housekeeping, and

o

:j) error recovery. A major concern in the design of these
{h‘ components is whether the update is using a standard data
‘%@i file that is part of an existing session or if it contains
hgﬁ
R all new data. The two types of update and their effect are
R

‘)'

: ﬁ considered in the discussion of the four main update

A 3

5} components.
"N

‘:, Request Validation. Validating a tool update
259
1;} request consists of checking both the contents of the tool
ﬁﬁ’ % update request and the information contained in the standard
B A 2-B9LAY
i " data file. The validation includes checking for the

e
f}q presence of required fields, that the fields in the request

*

:?: and header match, and the requested transactions can be

7) performed.

[})
‘jt Every field in the update request is required, except
\. -?"'
:;3 for the parent, level, and data entity fields. These fields
®
5 are optional and are only used for deletions. This allows
ho ">
A

4t¢ the user to delete varicus entities without first building a
Kl

o session file.

.' .
Yo The tool identification, phase, and type fields are
W
'{5 checked against the tool description table for validity.
", -

.

h The remaining fields are checked for their presence and

’d -~
.iﬁ ?}? their validity against established formats (reference
s
13

oo 85

-

e T ‘ o 05,504 S, Lk O A OGN T L OO) SOBOOOOTO SO HOSSO0N
i"’!'..i. ‘1\‘. l‘!‘l"‘g"q' A0 XY g' AL ..q () i.h\ LU e B .: .ﬁ.e‘h?‘ ‘!ﬂ“.‘ - "!" ‘0,) '0'., ’!".l’l,:'"h"‘!‘l‘-'l‘!‘C‘t“‘r'!'n'l‘v'i‘?‘ﬁ ;‘0.- A HUOOIA N

A Appendix E). The transaction indicator is especially
important because it controls the steps taken in the
database updates.

y Every field in the file description header must contain

a valid entry. 1f the transaction contains all new data,

the session identifier must also reflect this. Otherwise,

the session identifier must match an existing session in the

T N ww -

session identification table. The tool identification,

phase, and type fields must alsc match the values in the
session identification table. If the file description
header values do not match those in the tool request, an
error is generated and the update is rejected.

After the control fields pass the validation check, the

— e e
o P o X

18% entities listed in the file description header are checked
; to see if the indicated update can be performed. The
P requested update status of an entity is checked against the
status maintained in the session entity table. 1If the two
statuses are incompatible, the update transaction is
rejected. When a new entity, either added in the session or
Y part of a tool originated session, is to be written to the
y database, the database is checked to identify if an entity
) exists with the same name. If one does, an error is
" produced and the update is rejected.

Delete transactions require an extra step. The entity
list must be generated from the parent and level entries or

B g&; the data name entities contained in the tool request. This

: 86

- A At

g S ¥ Nt) W3 $'h
e PR A T N I I S i

) " AT AT 3 OGN GAO N0 WUy Y
S A s b todey gty n‘!‘ﬂ!‘t‘!’o‘.’u OO0 A .fu‘,'-‘!'-’!'o"'d!'i'-'ﬂ'»'—‘i'Jl"'ﬁ""'"l":'l"’ﬂ'- o9 0af.

BN -

list is used in place of the file description header’s

Ve
‘xj‘-
'y

e

entity list. All identified entities must not be in a write
status. If any entity is, it cannot be deleted by a non-
session request. If any entity in the list cannot be
deleted, the update is rejected.

Database Update. The data manager database update
routines support all database transactions. There are three
types of database updates made. These types are the
addition of a new entity, the deletibn of an entity, and the
modification of an existing entity. The design of the
update routines is based on supporting these transaction
types.

All the update transactions are controlled by several

&

tables and lists. A linked list is created which contains
either the entity list contained in the standard file
description header or the deletion.list generated during
request validation. The entities contained in the standard
data file are expected to occur in the same order as the

entity list. If an entity is listed for update in the

entity list but is not in the data file, the update is f
rejected. Entities in a delete status do not have a

corresponding data entity in the standard data file’s entity

list. The tool data definition table provides control of

the actual updates of the various relations constituting a

data entity. If a data element listed in the definition

‘giy table does not occur in the data file, the file is rejected.

87

Y R Y 0 0 80 > PN g Bt 0N
POOUTAN TR A e IO A U ARG

N l' N SO ORJO

0
I
Sttt

'?ﬁ,
e

.l“‘ q

- =

Wy . o
(¢ 0 UG Y Fu
A '&' ‘6.’.0. 4 .l‘ W 'b. 'd‘ .!. .‘l. t, " N .a. '0| l. .l. ‘l“' ...‘. A .‘....". s .‘. .'l,“‘ 4y 'l".l‘. l" ‘. .. ".. t‘."i.‘ '..l“ ‘ "|."" ‘.".Q‘ " 400 C'l,. N 3‘ I

The addition of an entity is straightforward. The data
elements contained in the data file are placed in a struc-
ture. If all the elements are present, the data definition
table is used to control the database update. This method
allows only correct entities to be written. If an error
occurs building the structure, error recovery is simplified
by not having to recover from a partial update.

The file deletion routine uses the tool definition
table to identify the relations containing the data elements
to be deleted. If an entity is identified for deletion, but
is not in the database, no error is generated.

The file modification routine utilizes both the delete
and add routines. The update process occurs in two phases.
The first is the deletion of the old entity. The second
phase is the addition of the modified entity. This method
was selected over trying to modify only the affected data
elements for simplicity and efficiency. To update only
modified data elements, the tool would have to track the
update status of each data element or it could identify the
entity as containing modified elements. The current tools
do not have the sophistication to maintain the status of
each data element, so the data manager would have to
identify the modified elements. The overhead involved in
either method far exceeds any benefit which would be derived

from reducing the number of relations updated.

!

g ' ;h\, After the database has been successfully updated, the
Uy X

$k o various work files and session control tables must be

g{ updated. The work files are deleted, including the copy of
;? the standard data file made during session generation. The
}) session entity table entries for this session are also

f§3 deleted. The session identification table is updated by

?ﬁ removing the information associated with the session’s iden-
{'.. tifier.

3

l& In the occurrence of errors, two types of actions can
Q; be taken. Errors identified during request validation only
1? require the transaction error file be built and the update
_%‘ be terminated. If an error occurs during the updates, the
?g - database must be restored. The standard data file copy is
35 ‘T:I used to recover any entities which were deleted or modified.
;w The work file is also used to delete any new entities added
§E to the database. The appropriate error messages are

-
-
>\

generated and the update terminated.

Lo

"

hﬂ Common Database

%, The basic design of the common database is well

'% explained in Thomas’ thesis (16: 84-142). The data manager
Ei requires a few extensions to this design. These extensions
‘!: are required to support the variocus tables used and to

ﬁi enable entity status tracking. (Reference Appendix A for
:% the current entity relations and formats.)

;g; ?;T Thomas intended for only one database to be used for
:E§ o all three data dictionary phases. However for flexibility,
E: 89

o

"'J

o

o ow . . ~ » - - P TP ™
{ he W e &N '}-I"..q.','-.r_\ L M‘P '\..'\ " Sl N
4, .‘I.) .'z"\"‘l.l.".. I."&"li‘ N ':“...,..h.‘l. .‘ 'y, ..""l XN AN AR " "‘\ RAN "q A) ‘A‘!“ nloe

i)

N P AR T
Gt R ettt

:w §§} this is no longer the case. A database may now contain one
v or more phases. The only requirement is that both entity

i: types used within a phase be present.

:$ The tool data definition table and the session control
? tables must also be supported by the database. These tables
% (relations) only have to contain sufficient information to
?& describe the entity types stored in the database and support
?ﬂ the tools accessing the database.

5

i Summar

: The data manager design focused on the data manager’s
i functions, the format of the various tables used to track

; and control database transactions, and the common database.
;' ‘: The goal of the design was to provide an easy toc use system
%; 7 which provides the user the flexibility needed to support

X

§2 his various needs.

% The tables are easily modified and changes have minimal
fs impact on the data manager or database. The data manager

E: can perform its various functions by using these tables, and
‘. when changes occur, significant code changes are not needed.
2 The error recovery provided is not sophisticated but it

E maintains basic database consistency. The design impact on
), the common database was also minimal.

K

35 The design of the various components was oriented

8

x towards maintaining system simplicity. The implementation
% 5§§ of the design and the results are discussed in the following
X v chapter.

Y

b‘ 90

L

)

QWY PR 1 \ N nh 00 A At
"fi',a."o,'fit‘ft.'?u") l'o "!.', Wsats bl e ‘.h " J Xh !0 o .h . X ‘.'o .'n‘t :%0. e "t KR 'n‘. n‘ NRRORRRR S ittt

.......

e
NS 6&§ VI. Implementation, Test, and Evaluation

' Introduction

%3 The primary goal of this thesis was to develop a

:f working dgta manager for use in the SEL. This chapter

%§ examines the implementation issues of the data manager,

%& reviews the testing procedures used during development, and
- evaluates the data manager from the tool developer’s

o —_ .

Rk viewpoint and its performance.

R

‘; Implementation

*é: The data manager implementation had to address several
:%g issues. The first of these issues was the development

}) ﬁ%i environment of the data manager. Another issue addressed
ﬁl | was the implementation of the data manager interface. The
s? final issue addressed was the error detection and recovery
%3 methodology used in the data manager.

%‘ Environment. An objective of the data manager was for
é: it to be flexible and widely available to the SEL tools.
v:t The AFIT computer environment and this objective dictated
ﬁb the operating system, programming language, and DBMS to use
Af in the data manager implementation. Within AFIT, the most
-. widely available computer systems are VAX 11/785s using the
'sh Berkeley Unix 4.3BSD operating system. Common to these

1“ systems is the Ingres DBMS. This availability directed the
9 -QFB selection of Unix and Ingres for use with the data manager.
'E: kd Based on this selection, the programming language had to be
: 91

Y

N T N P " R

R ‘ FAAIAN AT R T T 7 i REISU TR ¥ et g
B L e At Lt o e N A O G G

C because it is the only language available which can
directly interface with Ingres. The interface between C and
Ingres is implemented using Embedded Quel (EQUEL), which can
be written directly into the C programs.

This environment supported the data manager development
very well, except for one weakness. The EQUEL pre-processor
would not allow a data item to be declared using the same
data name in separate functions within a single Unix file.
EQUEL would recognize only the first data item declaration
and indicated any subsequent declarations as multiple
definitions of the data item. This problem mandated the use
of a different data name in each function, even though the
data item was used in the same manner in each of the func-
tions.

Interface. The data manager interface implementation
had to address two problems. The first problem was pro-
viding a user acceptable response time for interactive

requests. The second problem was preventing a user from

improperly terminating the data manager and consequently
corrupting the database. The sclution to these two problems
had a major impact on the data manager implementation.

The problem of providing a user acceptable response
time was a significant issue. Previous efforts (4, 16)
showed that poor response time caused user dissatisfaction.
The method selected to solve this problem was to develop an

interactive menu program which generates a transaction

92

" "r£ ; t“sx -Q!-.'Fpﬂ_s tmﬂ. s.:-.!\ig!m

&

‘1
\‘5’_‘!

]

request file and keeps computer interaction to the minimum.
The data manager then uses this transaction file for
background processing. Background processing of the
transaction frees the user from having to wait at the
terminal for the transaction to finish. This is especially
important for transactions processing a large number of
entities which may require several minutes on a heavily used
system.

The transaction file interface with the data manager
permits the interactive generation of a request but also
supports tools which can generate transaction requests
without user interaction. These tool-generated transactions
can be executed in batch mode, freeing the user from
interacting with the data manager.

The ability of the data manager to run in the back-

ground also solves the improper program termination problem.
Unix provides background job executicn which allows a
program to run without the user monitoring its execution.

By executing the data manager in the background, the user
cannot accidentally terminate its execution. A feature of
background jobs in Unix is the program can continue pro-
cessing even if the job initiator’s connection is ter-
minated. This is an especially important feature consider-
ing the number of jobs which will be executed by remote

users via modem connections.

93

P P PR ¢S IS yLY % _-r_f‘.-r_.v.. A .
N L R e e

The data manager and Ingres provide the concurrency

control necessary to support multiple simultaneous users.
Ingres provides basic concurrency control but protects only
the database’s physical structure. It does not prevent
multiple users from destroying the data entity structure.
The data manager’s session control provides the concurrency
control necessary to protect the data entities’ consistency.
It accomplishes this by marking all needed entities at the
beginning of a session. The data manager does not release
the entities until the session is successfully terminated.
Unlike large databases with many interactive users, the
central System 690 datab: e has a low volume of users at any
one time and the likelihood of multiple users simultaneocusly
trying to access the same data entity is very small.

Error Handling. Error handling was an important
implementation issue with maintaining database consistency
being the primary concern. Error handling by the data
manager consists of three steps. The initial, and most
important, is error detection. The next step is correcting
any errors encountered. The final step is informing the
user of the error and its cause.

Error detection is an extensive portion of the data
manager. Each transaction request is validated for proper
format and contents. If the transaction is an update, the
standard file’s description header is also validated for

proper format, and, in the case of a file being checked-in,

94

T RSy vvm1

e a valid session identifier. If an error is detected during
validation, the transaction is terminated. If no error is
detected, the database updates begin.

Any errors encountered after request validation are
caused by an invalid entity list in the standard data file
or an Ingres error. An invalid entity list will be the most
common error and is usually caused by the standard file
being corrupted during a system-to-system file transfer.
This type of error is detected during database update
transactions. If the entity list contains all new entities,
any entity which had been written to the database prior to
the error is deleted. 1If the request is a session check-in,
all database updates are reversed, leaving the database and

ﬁ61 session control files in the state prior to the attempted

check-in. Ingres errors are a more serious problem because 1
they indicate a possible system error. If an Ingres error
is encountered, the data manager attempts to return the
database to the state prior to the update request. This
type of error may corrupt the database and must be handled
carefully by the database administrator.

All errors are reported to the user. The data manager
identifies the type of error encountered and the possible
cause. This information is provided to a user in the .res
file associated with each transaction.

The form of error handling used in the data manager is

unforgiving. As soon as an error is detected, the database

wvewr WO PR IR U TN EE NN AR ™ W E TV U U U Ul T e L e

is restored; if necessary, the error is reported; and the
data manager then terminates. Database consistency was the
driving concern and this consistency must be maintained, at
the expense of extra effort by users and tool developers.
This burden falls mostly on the tool developers in their

work in generating a valid standard data file.

Test

The testing strategy used in developing the data
manager occurred in four phases. These phases were unit
testing, integration testing, validation testing, and system
testing (13: 502). This strategy is shown in Figure 23,

Unit testing examined a module’s interface, data
structure integrity, boundary conditions, and error handling
(13: 503-504). ERach of these areas was tested using both
test data and through normal use of the modules. Because of
the extensive data passing between modules, the module’s
ability to maintain a structure’s integrity was focused on.
The module’s error handling capability was also tested
heavily because of the database integrity issue.

Integration testing was the next test phase. Integra-

tion testing focused on uncovering interface errors (13:

507). A bottom-up incremental integration test was used

|
(13: 508). This method was selected because the data }
s manager’s low level mcdules contain the database update and

[retrieval routines. The successful implementation of the

“.\.{

data manager depended on these mocdules working properly.

. These lower modules were tested first to determine the
feasibility of using a data definition table and generic

database access routines.

Design Software
Module Information Requirements
Validation
Assembled Test
e Software
Integration Validated
Test Software
Module @ System
Tested Jest
Module
Other System
Elements
Module
————t— .
Operational
System

Figure 23. Software Testing Steps (13: 503)

97

:&; %ﬁ} Validation testing occurred next. This testing phase
!r is concerned with the "does it work as expected"” question

4 +

.22 (13: 514). The data manager validation test measured its
E& ability to properly process data generated by the current
R% SEL tools. The tools used in the test were the new SADT
*;i BEditor (9) and the data dictionary editor. The SADT Editor
g& files were successfully tested. The data dictionary file
‘;ﬁ test required the development of a translator. The trans-
=£§ lator converts the standard data file for the design phase
ﬁ?‘ data entities to the data dictionary file format and vice-
B versa.

o

(ﬁ System testing is concerned with overall system issues,
Al

Lo a0,

such as software and hardware compatibility, and usually

o involves different groups of individuals (13: 516). 1In this
- instance, the system issues were addressed in the validation
R
:) tests.
e ",
Ry
13508 Evaluation
VN
'?‘
s The data manager was evaluated based on two criteria:
®
S how easy was it to use in integrating tools into System 680
o
xd and what were its performance characteristics. The integra-
o
ey tion evaluation was based on integrating a new tool into
.'.
fﬁ System 690 and integrating an existing tool. The perfor-
HQ mance evaluation was based on a series of tests measuring
e
P
=
;tf the time the data manager took to complete a specific
|
e’ —v
}{ »ﬁﬁj transaction.
e)
.I'")
?3 g8
!
@
_\':
o
Us . ~ A - ot ™ N
-‘ . N] "'")"f"“i W by TRt e T R e . ‘-,' ‘-‘.'-_" e LTy "- "“'- e "-'.\ i/ $\51 a1 Y V \N 1‘* >)
-..!.. BOSO n ARINAASSS VTS I AR I A WY, J"\ 'h"‘ 0 S S LR "' ity 2

LAY

- o

. ..-‘
M’

5

»
.

e
vn",."‘
PRI

~'l
Ay Oy

i g TN
<)

-~

'S
IS A

z
o=

_--,-«
- [5
® r A

w7

D ARt B)
RN W R W S

yoeo s v E

<@

2 L
aﬁﬁﬁ;a

-‘;-

- < ':
AR L RARARRAS T4

s

&

New Tool Integration. The integration of the standard

data file, data manager, and a new tool (9) was deemed
successful by the tool’s developer. No significant errors
were encountered in using the standard data file. The
structure of the data element entries was easy to manipulate
by the tool. Some of the entries within an element (ie.
multi-line indicator) were not used but with each entry on a
separate line, the unused entries could be easily skipped by
the tool.

The overall effort of incorporating the standard data
file was small. Most of the effort was needed in maintain-
ing and generating the file description header information.
The estimated effort to use the standard data file was 1% of

the programming effort.

Existing Tool Integration. The existing tool chosen

for integration with the data manager was the Data Diction-
ary (DD) editor. The DD editor provided an excellent
opportunity to measure the integration effort because the DD
editor’s execution is directly related to its file format.
For this reason, a translator was developed to convert the
standard data file to a DD file and vice-versa. The DD
editor also had to be modified toc support using the standard
data file.

The bulk of the work required to integrate the DD
editor with the standard data file was in developing the

translator. This translator was straightforward to design

99

N AR A T TN TRt R R S M S S L -,
N T e e TR A ';T* NN VUG L e j?f i
- . A y 5 A ‘ v . J - - . .

VENATR, N Y 0 o 00T

-

I I

‘ﬂ‘-.- o —‘<
e 2 O

T
paie

x

e %

e e W
-

-“-.,
<L SR

-

R N ORI O E

0

o

"u

o

& A
R

)

and implement because the standard data file is already in

the proper order so it is a one-to-one translation for each
field.

The DD editor had to have a minor change made so that
it could track the session identifier. This change was
necessary to insure the session identifier remained with the
associated file. The modification required the addition of
only 10 lines of code and had no impact on the editor’s
performance.

The results of integrating the standard data file and
the tools showed that the file lends itself to the System
690 tool structure and it supports both old and new tools.
The ease of integration was a key requirement of the data
manager and it was successfully met.

Performance. The standard data file was integrated
with both new and old tools which was a basic requirement.
Another requirement was for the data manager to provide an
acceptable level of performance. This section evaluates the
execution performance of the data manager.

To measure the data manager’s performance a series of
test jobs were run at varicus times of the day for a week on
the two VAX 11/785 systems (ASC & SSC) available within
AFIT. The job consisted of a multi-level retrieval, 1
level, and the immediate submittal of this session file for
writing to the database. The resulting standard data file

contained seven action entities and two object entities.

100

RN

a% Ty The jobs were run at two hour intervals from 0800 until 0200
I to examine the data manager’s performance under a wide

lﬁ variety of system loads.

:ga Results. The performance parameters measured were
?ﬁ the times required to perform the retrieval and the time

333 required to perform the update. System load was based on
fﬁ: the number of users on the system during data manager

}N execution. A comparison was made between the number of

:jé users and active processes and they were found to be

%: proportional.

i. The final results showed a surprising performance

E% difference between the ASC and SSC computer systems.

Eﬁ . Although the two systems had approximately the same number
é‘ ﬁji of users, system configuration, and identical databases, the
é} ASC executed the jobs, on average, twice as fast as the SSC.
'xé This difference was attributed to the SSC’s job mix. The

U.’

SSC is used in the AFIT Engineering School and processes

.

EEE more computational intensive jobs than the ASC. Because of
:i» the differences, the ASC results (Fig. 24) are presented.

:g% The average time to perform the retrievals was 121

véﬁ seconds with seven users on the system. The average time to
'E perform the updates was 114 seconds. The SSC results, based
v:i on the best performance for each time period, were 280

:Eg seconds for the retrieval and 257 seconds to perform the

?B update with an average of eight users on the system. The
:; :?;' ASC times were improved to 114 seconds for the retrieval and
<

-

‘i 101

.‘

| ::

- \-D.,'("\.’r ~4) :1\(WY ; '({wv-’w vy - ", AT -‘,.{*‘:{{,

".

i;, ,$& 106 for the update when the worst performance time period
154 P

)

,”” e was discarded. The time of day was 2400 when overnight
37: processing was initiated. The worst performances observed
caGs

f:j were 200 seconds for the retrieval and 213 seconds for the
)

0..'

?? update.

I: o

1

B % RETRIEVAL RESULTS:

W

oRh) BEST OBSERVED: 1:23 MIN

' WORST OBSERVED: 3:20 MIN

.'.

;!'. W AVERAGE: 1:54 MIN

g

L

wo

|] UPDATE RESULTS:

[4 .l

. BEST OBSERVED: 1:20 MIN

;{; WORST OBSERVED: 3:33 MIN

A\.’

".}- ‘;.1; AVERAGE: 1:46 MIN

- ®

S

vy

~":

:?» Figure 24. Data Manager ASC Performance Results

-

WS

The retrieval consistsgs of building the list of entities
to be retrieved based on the parent and retrieving and

writing the entities to the standard data file. These times

:§ were monitored internally by the data manager. The time

4

i

R S S

S
axl a_K_.8

required to build the entity list using the multi-level

o retrieval was important because this incurs much more

= .

iﬁ overhead than a retrieval specifically listing the required

Uy

Vﬁj entities. The average time to perform the multi-level list
v

3&0 - build was 40 seconds. Without this overhead the retrievals
Pafy) '\J':)

fﬂ# - would finish in about 90 seconds, but the extra time is a
~

! 3 102

v~ [&

®¢

. }‘:’7'

‘Z* - T.‘\“‘

RS

Ry, PAPAT 2 " n * JERER A) DUOU0 L 0 oF P - Y W) - A ", AL A I PUPGEY
PR, ."-'..u':'a‘!! '- W Sl :!"-"‘tt"o?" n SO IO ,«‘;‘0‘2"‘. A N R NG et M

small penalty for the benefits derived. The user is assured
of receiving all the existing entities and it saves him the
trouble of typing in the entity list. A user could not
manually build the list as fast as the data manager.

The update time will be proportional to the number of
entities in the file. There is no way for the user to
increase its performance, but less than twoc minutes to

update the database is acceptable.

Summar
The data manager implementation was greatly affected by

the AFIT computer environment which helped dictate the use

of Unix, C, and Ingres. The capability for background
L processing in Unix was an important factor in developing the
data manager interface. The interface was implemented to
require minimal user interaction. The data manager imple-
mentation also placed a high degree of emphasis on error
detection and recovery, with database consistency being the
main concern.

The data manager was thoroughly tested beginning at the
lowest levels and slowly integrated from bottom to top. The
data manager was tested using test data and tool-generated
data. The validation testing showed that the data manager
was capable of processing tool requests and could success-
fully perform its expected functions.

The evaluation measured two key features of the data

manager: the ease of integrating the standard data file and

T T .

tools and the performance of the data manager. The results
of integrating the standard data file into both old and new
tools showed the file to be easily integrated with minimal
impact on the tool itself. The integration of the standard
data file into existing tools will probably always require a
translator be developed, but only a single translator is
needed. Other tools do not have to build a translator to
use another tool’s data. This avoids the need for a "power

set” (14) of interfaces.

The performance measurement showed an acceptable
response time for performing updates and retrievals. The
poor performance of the SSC was surprising, but it did prove
the advantage of having a batch interface. If the data

manager was implemented on a slow system, it could be

executed in batch mode without the user having to wait 10

minutes for the transaction to finish.

“-n-w-w1

VII. Conclusions and Recommendations

Conclusions

The purpose of this thesis was .9 implement a common
database interface which integrates the separate tools in
the AFIT Software Engineering Laboratory. This interface
was required to not only integrate the existing tools but
also support the addition of future tools to the SEL. The
integrated tools would then be able to share a common data-
base.

The method selected to implement the interface was the
use of a standard data file and a data manager. The
standard data file is used to transfer data between the
tools and the data manager. The data manager performs all
database updates and retrievals.

The standard data file has a standard structure that
all the tools and the data manager can interpret. The
flexibility of the standard data file is provided by being
able to adjust the order and contents of the data elements
in the file based on a tool’s specific needs.

The data manager is the key component of the interface.
Its key features are its ability to generically perform
database updates and retrievals, provide session control,
and support error recovery. The generic database access
allows an existing tool’'s data file requirement to be easily

incorporated with little or no programming changes. The

105

o

s
e Ls

L)
vy

o - A X Ol it -9 - an n ' .. - - g P p pl‘r
il "'.0 D0 :'4 3"".12 " RN ' ?.:.:.l Yot ettty J! IURC AN

generic access also allows the addition of new tools into
the SEL. The session control function performs basic data
access control by allowing only an entity’s owner to modify
it. 8Session control also provides the librarian function of
checking data entities in and out of the database and
monitoring their status. The final function of the data
manager was to provide error recovery. The data manager
insures the logical structure of the data entities is
maintained and that it can restore the database back to the
state prior to the error.

The standard data file is an ASCII file which can used
on all the current SEL workstations and those which are
planned for later addition. The data manager is implemented
in C and uses the Ingres DBMS. The data manager makes
extensive use of Ingres to maintain the various tables it
uses in performing its functions.

The implementation of the common database interface was
evaluated to see if it met its integration and performance
requirements. The standard data file was found to be easy
to use by both old and new tools and well suited for its
role in the interface. The data manager was evaluated to
measure its execution performance. The evaluation found the
data manager capable of being able to perform a typical
database retrieval or update in under twoc minutes. This

time is acceptable within the System 690 environment.

106

NP Ve

P et 2 ’

at byt
 JLM I ..h.

o e A

b E L B B3 aia Al ANaAM aEo -aaadi oB ok oap e mod hogioa-hoa-A e ha o ath Al adte b ath Ak alhoall skl abd aed ol ohioadialinftat dinh el FUEETFTETUEVEVYEE™Y

Overall, the implementation of the data manager and
standard data file satisfied all the established require-
ments. A system which successfully integrates the existing
System 690 tools was implemented and it was shown that this
system supports the addition of new tools into System 690

and creates an integrated software engineering environment.

Recommendations

The implementation of the data manager presents the
opportunity for several enhancements to the System 630
environment. Primarily these enhancements are modifications
to the data manager or the development of database util-
ities. However, the data manager provides the means for
new, more comprehensive and flexible tools to be added to
System 690.

The data manager and standard data file need to be
modified to allow multiple start/stop time entries. These
multiple entries would support a more comprehensive tracking
of tool usage patterns. Currently, only the last time a
tool was used is passed to the data manager. This does not
reflect true tool usage because the data is manipulated
several times during a session. With only one entry, none
but the last of these manipulations are retained in the
database, providing a distorted view of tool usage.

In conjunction with the multiple start/stop time
tracking capability, an enhanced performance measurement
tool needs to be developed. The tool would monitor the

107

ST N N ™ A S Ry O e bR
Nw»aﬁmﬁumnﬂsﬂn-u%MMMus-* W fﬁudmﬁargammuuugnhmmuauk

3)
b

"\

L

S}‘ ﬁgg' appropriate information (ie. user, tool id, transaction,
?(results) to accurately measure tool and data manager usage
g% and performance. As part of this tool, a history mechanism
?E could be provided to monitor trends such as unbalanced tool
i, usage and to identify and isolate the cause of consistent

f; tool or data manager errors.

a: A standard data file print utility needs to be develop-
(v ed. The only means available to print data dictionary

iﬁ entries are to convert the standard data file into a data

f: dictionary file and use an existing print program. The

j’ print utility needs to be able to print a standard data file
:§ for any phase and for multiple data entities in the file.

-; o To support an integrated environment, a database

. ﬁ. consistency checking system needs to be developed. The data
'EE manager maintains consistency only at the entity level. A
:f: means to maintain design consistency within a phase and,

;' more importantly, across phases is needed. This would

kz prevent many of the design inconsistencies introduced during
': system development, especially in group projects.

{: To better support batch tool transaction requests, a

g file transfer system needs to be developed. A means to

?; transfer files within System 690 without user interaction

; would provide the basis for a distributed design environment
E; where a designer would only have to know how a tool works,

” not where or how its data files are used or stored.

3 %

R \
R 108

L L, e,y N O o e s e e e S
‘l‘..c‘. ,-..f..-O'...-oﬁw?-'!. ASALA '\ ol i

LAAPMPNMWLL -

o

. .. . g
A A

s

Chaf g 4 l‘ "'. x 's_“.”‘|..‘

-

-

- s
A RN PP es, P9~

[

A A,

L
Y
P4
‘€4
e
K
o
1
P r“\.!;
(LA

- Y,V

-

»
| B

. -
ab op 479,

NN

Appendix A: Data Dictionary Database Relations and

Data Dictionary Descriptions

The database relations for the data used in the data

dictionary entries specified in the Software Development

Documentation Guidelines and Standards (5) were developed by

Thomas (16) and refined by Foley (4). This appendix

provides the definitions of the data dictionary database

relations and indicates the database relation and attribute

for each data dictionary entry field.

KEY: a)

b)

c)

The class of each relation is shown in
parenthesis:
ie. activity (1) -- activity relation; Class 1

The type of each data dictionary field is provided
in parenthesis:

(S) -- Single-line field
ie. NAME (S): name

{M) -- Multi-line field
ie. DESCRIPTION (M): desc linel
desc line2

(G) -- Group field
ie. ALIASES (G): aliasname
WHERE USED: where
COMMENT: comment

BEach data dictionary field indicates the relation
and attribute for the field and its key(s). The
key is formed using the indicated attribute(s) and
project.

ie. NUMBER: activity number aname

109

L AX At O SOALAC eV Oy CA)

S -y . R, e A - g e o I I TR AT " QAL A A N e YR
B S e e e e

1y

P Y XYY

e
. .bﬁﬁAﬁﬁﬁﬁ

.‘v

FIIgId

o
re

5 @

LIAEEY
F D R v B |

ANSAN1®

". g
L’l. \'EL'L ’ X

i

'

PR

22 @

y

'y

- »
AT AN

- . . - - L2 - AU R N Y
[DI L T P I P e « R L DR A N L N R
L AR S AL R RER x%x-.\'&.{"-. : ‘ T R A i A Ry - BT S N NS

A A At ath ath J1a 20 e b tel Bl Aol ool s

The relations and data dictionary entries are presented
in the following order:

REQUIREMENTS PHASE:
ACTIVITY -
DATA ITEM --

Action Entity
Object Entity

DESIGN PHASE:
PROCESS -
PARAMETER --

Action Entity
Object Entity

IMPLEMENTATION PHASE:

MODULE -- Action Entity
VARIABLE -- Object Entity

110

RALARER,

»

o

K U,v'-"v'x".‘

.
& A4
[b Sl

M=
9@ g

i B g

»

]

Nl

-
-

RO

4
ALY

A ’.' b‘_\‘ . s

S

.
g
'
4
't

®
Kt

L;',"?

ACTIVITY RELATIONS

activity (1)
project
aname
number
status

adesc (2)
project
aname
line
description

activityio (3)
project
aname
diname

type

aalias (4)
project
aname
aliasname
comment

ahierarchy (5)
project
hianame
loaname

areference (4)
pProject
aname
reference
reftype

ahistory (6)
project
aname
version
date
author
comment

cl2
c25
c20
cl

cl2
c25
i2

c60

cl2
c25
c25
cll

cl2
c25
c25
c60

cl2
c25
c25

cl2
c25
c60
c25

cl2
c25
clo0
c8

c20
c60

i
Ny W Ve BN LW A% D Iy TR Y e P T A I I iy T e T e
J [W 2 3 v <

o SN T m 5)

111

= ACTIVITY DATA DICTIONARY ENTRY

A -
=
s

.I

NAME (S): activity aname aname
.Qg TYPE: ACTIVITY
;53 PROJECT (S): activity project aname
3; NUMBER (S): activity number aname

DESCRIPTION (M): adesc description aname line

L }‘r‘,‘f‘r‘t

INPUTS (M): activityio diname aname type (IN)

- - & s
. ‘:. p

%f,e

OUTPUTS (M): activityio diname aname type (OUT)

CONTROLS (M): activityio diname aname type (CON)

<y

-

‘o ne
*
A

MECHANISMS (M): activityio diname aname type (MECH)

b
Iy

ALIASES (G): aalias aliasname aname
COMMENT: aalias comment aname
:5* S PARENT ACTIVITY (S): ahierarchy hianame loaname
> REFERENCE (S): areference reference aname
s REFERENCE TYPE: areference reftype aname
. VERSION (S): ahistory version aname
‘1? VERSION CHANGES (S): ahistory comment aname
N DATE (S): ahistory date aname

XY AUTHOR (S): ahistory author aname

—rp
[4
VWU

:‘.
et

HE I vt 1 ®

Jo b

112

l’ .
SIS L4 l&JsJ

:{ -

- =
»

""""‘..’I T RO T A S N \ -
. ‘ _-0- » 13. .'lo ’.‘ ‘!.olc'l.,o 5 " . ,‘. .l-'!."“ '.'O\O"O'o'inoo"u . 'la'l.sia Q “.‘.l.‘ U...o. ..iv“

S DATA ITEM RELATIONS

dataitem (8)

s project cl2
“ diname c25
> datatype c25
- low clb
b hi cl5
' span c60
.i' status cl
* ‘I
o didesc (2)
w' project cl2
y diname c25
B line i2
o description c60
oo divalueset (4)
:h project cl2
® diname c25
J value cl5
Ny

hg dihierarchy (5)
by project cl2
o hidiname c25
{ L lodiname c25
e

Q' dialias (4)

op .

0 project cl2
) diname c25
' aliasname c25
. comment c60
': whereused c25
2
:q, diref (4)
o project cl2
<t diname c25
‘2 reference c60
;? reftype c25
%

4 dihistory (6)

2, project cl2
: diname c25
o version clo0
N date c8
o author c20
L comment c60
o

S -~

N
L 113
.

®

i

s o

I RTREOY, % v n --_‘-qpq.\q_ o WYt

R
e
B
3

) X ?
U U RSN \..'v...?

p——
SR

-
-~

2PN

- 7

~n ..
»

- . .-

- 22 LA A7,

L YSe

> ~
o W
AW ':?"o SN

TS w Ry

DATA ITEM

LMl aad ol al 4os o8 A A A g g Beg Rig 0o Ao Sa0 gt A1 geo ATC AR FoVo AL ol v<—]

DATA DICTIONARY ENTRY

NAME (S): dataitem di

TYPE: DATA ELEMENT

PROJECT (S): dataitem

DESCRIPTION (M): dides

DATA TYPE (S): dataite

MIN VALUE (S): dataite

MAX VALUE (S): dataite

RANGE (S): dataitem s

VALUES (M): divalueset

PART OF (S): dihierarc
COMPOSITION (M): dihie
ALIASES (G): dialias
WHERE USED:

COMMENT :

SOURCES (M): activityi

DESTINATIONS:

INPUT (M): activi

CONTROL (M): activi

REFERENCE (G): diref
REFERENCE TYPE: dir
VERSION (S): dihistory
VERSION CHANGES (8): d
DATE (S):

AUTHOR (8S): dihistory

dialias

dialias

dihistory date

name diname

project diname

c description diname 1line

m datatype diname

m low diname

m hi diname

pan diname

value diname

hy hidiname lodiname

rarchy lodiname hidiname

aliasname diname

whereused diname
comment diname

O aname diname

type (OUT)

tyio aname diname type (IN, MECH)

tyio aname diname type (CON)

reference diname

ef reftype diname

vergsion diname

ihistory comment diname

diname

author diname

114

PROCESS RELATIONS

process (1)

project cl2
prname c25
number c20
status cl
prdesc (2)
project cl2
pPrname c25
line i2

description c60

processio (3)

project cl2
prname c25
paname c25
direction c4
type c4
pralias (4)
project cl2
pPrname c25
aliasname c25
comment c60
prcall (5)
project cl2

prcalling c25
prcalled c25

pralg (2)
project cl2
prname c25
line i2

algorithm c60

prreference (4)

project cl2
prname c25
reference c60
reftype c25

- prhistory (6)

: project cl2

, prname c25

5 version cl0

9 date c8
ST A author c20
S comment c60

ﬁ 115
e

5

o T Cu Ca N N . ""’1 S A IR I T W A S R I L PR T A I s . CL VN ."‘Y' " .,’ A TS TS TR Y

CR AR S W m S : Y > , ' - AT T \
--l"l --~- - | N AN L 0,00 TR 1Y ;I.‘D'li>.‘§t.

~gV.N T,

W PROCESS DATA DICTIONARY ENTRY

P L NAME (S): process prname prname

‘}: PROJECT (S): process project prname
o

= TYPE: PROCESS

h AN

0

NUMBER (S): process number prname

»
]
J}l‘f\..‘ [J

DESCRIPTION (M): prdesc description prname line

INPUT DATA (M): processio paname prname direction (IN)
type (DATA)

INPUT FLAGS (M): processio paname prname direction (IN)

F e .’ N

g

type (FLAG)

R ’p'
KA OUTPUT DATA (M): processio paname prname direction (OUT)
Ty type (DATA)
'A':

.’ OUTPUT FLAGS (M): processio paname prname direction (OUT)
? o
5 type (FLAG)

.‘J

’$ ALIAS (G): pralias aliasname prname

.
<=

4
o Eh-

COMMENT: pralias comment prname

N
f: CALLING PROCESSES (M): prcall prcalling prcalled
o PROCESSES CALLED (M): prcall prcalled prcalling
o
®) ALGORITHM (M): pralg algorithm prname line
Sl
b REFERENCE (G): prreference reference prname
[} »
#ﬁ REFERENCE TYPE: prreference reftype prname
§
o VERSION (S): prhistory version prname
')
n:g VERSION CHANGES (8): prhistory comment prname
L) "
e DATE (S): prhistory date prname
ﬁr. AUTHOR (S): prhistory author prname
e, ¥
5
\ \j
e
5.
AR
v,
NN
o 116
5
! 3
L
B
¥ "

o PO P I a8, N ™ e "';f}‘-_.l‘ !))
.n' nl‘ > Q... .0.‘ - \ % w }ﬁ c‘. A l‘ 'r ‘ VRPN i A “‘ . V.'n A"‘.'.‘Q‘.'b‘.u ‘- 'b":?" .'..'.“.' ..‘...

™ \'

s PARAMETER RELATIONS

(IR P

S parameter (8) papassed (4)
: project cl2 project cl2
o paname c25 paname c25

datatype c25 prcalling c25
low clb prcalled c25

) hi cl5 direction c4
i span c60 iopaname c25
- status cl

h-
:{: padesc (2)
5; project cl2

e paname c25

N line i2
. description c60
S48
;:: pavalueset (4)

o .

o project cl2
‘:J paname c25

’; value cl5

*)
‘Jﬁ pahierarchy (5)

,: project cl2

WY hipaname c25
N 6,-_ . lopaname c25
{ ®

4y ' paalias (4)

[project cl2
o paname c25
.: aliasname c25
» comment c60
®) whereused c25
1) »
X j paref (4)
?v project cl2
A paname c25
o reference c60
K2 reftype c25
:? pahistory (6)

> project cl2

o paname c25

g version cl0

22 date c8
A author c20
.- comment c60
-
o

¥ E

v

3

‘:: 117

®
[y >

o

‘N"\- "h.' - <~’~ ..)_1 o AR - - -_'4'_:- ---------- et T ATy T \ ------ At AT R AT Tt _‘~.. LAY,
. ¢, ¥, Nk, . [P . .) . » R

£

PARAMETER DATA DICTIONARY ENTRY

NAME (S): parameter paname paname
PROJECT (S): parameter project paname
TYPE: PARAMETER
DESCRIPTION (M): padesc description paname line
DATA TYPE (S): parameter datatype paname
MIN VALUE (8): parameter low paname
MAX VALUE (S): parameter hi paname
RANGE OF VALUES (S): parameter span paname
VALUES (M): pavalueset value paname
PART OF (8): pahierarchy hipaname lopaname
COMPOSITION (M): pahierarchy lopaname hipaname
ALIAS (G): paalias aliasname paname
WHERE USED: paalias whereused paname
COMMENT: paalias comment paname
REFERENCE (G): paref reference paname
REFERENCE TYPE: paref reftype paname
VERSION (S): pahistory version paname
VERSION CHANGES (8S): pahistory comment paname
DATE (S): pahistory date paname
AUTHOR (S): pahistory author paname
CALLING PROCESS (G): papassed prcalling paname
PROCESS CALLED: papassed prcalled paname
DIRECTION: papassed direction paname

I/0 PARAM NAME: papassed iopaname paname

‘;;‘,

o e

i

C 3
\i‘:’{'
l. R

W Wy W W N a1 - W
L

MODULE RRLATIONS

module (1) modalg (2)
project cl2 project
modname c25 modname
filename c25 line
nuaber c20 algorithm
status cl

moddesc (2)

project cl2
modname c25
line i2

description c60

modpass (3)

project cl2
modnane c25
varname c2b
type c4
moduleioc (3)

project cl2
modname c2d
varname c25
direction c8

type cl2

modcall (5)
project cl?2
modcalling c25
modcalled c25

modalias (4)

project cl2
modname c25
aliasname c25
comment c60

modreference (4)

project cl2

modname c25

reference c60

reftype c25
modhistory (6)

pProject cl2

modname c25

version clO

date c8

author c20

comment c60

119

Y VN Y ", PRIACALTS ’ (J' . n_-f

=N

cl2
c2d
i2

c60

o

- -
-t
- -

rp» L.

e 5 %
X »

=

-'a'-‘o;’

N -, - o
'3 A@ I

P

Py

\ -‘I.‘.:I.."ﬁ" .

cLL e Ly

L)
J
’

MODULE DATA DICTIONARY ENTRY

NAME (S): module modname modname

PROJECT (S): module project modname

TYPE: MODULE

NUMBER (S): module number modname

DESCRIPTION (M): moddesc description modname line
PASSED VARIABLES (M): modpass varname modname type (PASS)
RETURNS (M): modpass varname modname type (RET)

GLOBAL VAR USED (M): moduleio varname modname
direction (USED) type (GLOB)

GLOBAL VAR CHANGED (M): moduleio varname modname
direction (CHANGED) type (GLOB)

FILES READ (M): moduleio varname modname
direction (READ) type (FILE)

FILES WRITTEN (M): moduleio varname modname
direction (WRITTEN) type (FILE)

HARDWARE INPUT (M): moduleio varname modname
direction (IN) type (HARD)

HARDWARE OUTPUT (M): moduleio varname modname
direction (OUT) <type (HARD)

CALLING MODULES (M): modcall modcalling modcalled
MODULES CALLED (M): modcall modcalled modcalling
ALIASES (G): modalias aliasname modname
COMMENT: modalias comment modname

REFERENCE (G): modreference reference modname

REFEFERENCE TYPE: modreference reftype modname
VERSION (S): mwmodhistory version modname
DATE (S): modhistory date modname

AUTHOR (8): modhistory author modname

120

" v . . - o " ~ " 2 =X Lad 3 v o wvvvvvvr’
W

Al

L

oA

ﬁw

‘}‘3::) FILENAME (S): module filename modname
el an

L \ﬁi ALGORITHM (M): modalg algorithm modname line

TSy b

) ‘
-'l.n
..
h“’
\i’
A
>
‘o
<
4R PN

~
-
®

(4
L3

‘
ety

g X
RAALL 2

RENEN)

Y

o

»

Pl e
L]

FA

AR

55

>

-3

v
:

[) n‘
A

5

P ARLAPLI

121

X

P Nt

A

A
%

'._,'. '.'A"-")}r(:'!‘(?‘(b-"" -*‘r ‘)'('V') ;'n':t"tf‘a\’ v.r\,’ - RN
‘ Al . aal » P N Soa Pon flde B

y A% 4 4, QY

VARIABLE RELATIONS

._‘-}'*_
Koy variable (8) varhistory
project cl2 project c;é
varname c25 varname c
datatype c25 version cl0
low clb author c20
hi cl$5 date c8
span c60
storetype cl2
status cl
vardesc (2)
project cl2
varname c25
line i2
description c60
varvalueset (4)
project cl2
varname c25
value clb
varhierarchy (5)
project cl2
,os hivarname c25
Ve lovarname c25
varalias (4)
project cl2
varname c25
aliasname c25
comment c60
whereused c25
varpassed (3)
project cl2
varname c25
® modname c25
’ direction cd
%
: varreference (4)
e project cl2
varname c25
.v reference c60
o reftype c25
-
aY
~
-
, i: '\::-:‘
[y ,"
, ,,i:
:‘.: 122
®
e
. :" AL RS IR

. ‘ . : PP o, e . A A AL A A .

.. AN T e » . L) » . NN 0 l’\ l . . N (O .. ; ")

"W » Wy AN .‘o.' "' .', "' KRN '2‘ 0‘02".0. Y o."ﬁ.‘"nh.i O .l‘c. BN AN Xy Y WRELERTREND D,
+ - R . E] A "

.

.“.‘

o .. .
IR g

X

~

PEEN

-

»

P

» Ny

a «

hJ

N

P

VARIABLE DATA DICTIONARY ENTRY

NAME (S8): variable varname varname
PROJECT (S): variable project varname
TYPE: VARIABLE
DESCRIPTION (M): vardesc description varname line
DATA TYPE (S): variable datatype varname
MIN VALUE (8): variable 1low varname
MAX VALUE (8): variable hi varname
RANGE OF VALUES (S): variable span varname
VALUES (S): varvalueset value varname
STORAGE TYPE (S): variable storetype varname
PART OF (S): varhierarchy hivarname lovarname
COMPOSITION (M): varhierarchy lovarname hivarname
ALTIASES (G): wvaralias aliasname varname

WHERE USED: varalias whereused varname

COMMENT: varalias comment varname

PASSED FROM (M): varpassed modname varname direction (FROM)
PASSED TO (M): varpassed modname varname direction (TO)
REFERENCE (G): varreference reference varname

REFERENCE TYPE: varreference reftype varname

VERSION (S): varhiastory version varname

DATE (S): varhistory date varname

AUTHOR (S): varhistory author varname
123

“. SR

PE N

e e N e = AP m e m ‘.'_'."f"."" "R e T ,.‘._....’..-_--..'.-?-‘_.
o O A Y s P o R NS NN 2

T

) 2.8 5.0 BB £.8 S8 Aok Bof { 2o 2l B8 2.8 ol Ak aas and S0 ol aad Aad ack aak dnk sl caf. calh Sal el Mallty bt gl Anl il Aal cal Mall a0k Sk A

} Appendix B: Standard Data File Format

Overview

The standard data file (SDF) is the interface between
the tools and the data manager (DM). The data file consists
of two parts, a file description header and data elements.
The format and contents of these two components are ex-

amined. The overall file structure is also presented.

File Description Header

The file description header (Fig. 1) provides a full
description of the file’s data contents to both the tool and
the data manager. The TOOL ID indicates the tool the data
- elements are formatted for and the PHASE and TYPE fields

provide the type(s) of data elements contained in the file.
This section examines the format of the file description
header and establishes the acceptable field values. Figure 2

provides an example file header.

I. ;
&

o)
-
)

& Ty

Field Values

‘ The standard data file may be generated by either
'?" the data manager or a tool. The file’s source can affect a
field’s contents. In those instances, the differences are

pointed out.

124

L

.. f - "
P e

Pl

L g o o A Ste Sas Sen Ata She She ke Alke* !".I T ek hak Sad ik b LAl And il A v [.l.'.!.T

SESSION ID
TOOL ID
PROJECT
PHASE

TYPE

START TIME

STOP TIME

LIST OF ENTITIES:

Name

Name

Type

Type

Status

Status

Figure 1.

File Description Header Format

ACT W
OBJ R

2. Example File Description Header

125

; #@@BEGIN@@#

! #@$#HEADER BEGIN#@#
; a08048710045

| SADT

! ECS SYSTEM

(ACT

(- BOTH

- 000000
- 111111
b Build Database
3 CRT Input

¢ #@#HEADER END#@#
Pl

-,

b Figure

oS

o a

. »

[

1]

(

)

ot BT T e e

. - om v a e - - cmt et . - - e Tt . . R
RN Sy A A T LSRR -_"\ "\-.,.‘J;r.v'- '."* P !‘
o ¢ D D)

Wmmmmmmwwwxvu - 1
~

SESSION ID: The session identifier indicates the
overall update status of the data contained in the file.
There are three types of session id entries:

1) All data is in a retrieve status and may not
be updated. (DM generated file)

ENTRY: "CONTAINS ONLY RETRIEVE ENTITIES"
2) All data entities are new and being submitted
to the DM for the first time. (Tool generated
file)

ENTRY: "SESSION CONTAINS ALL NEW RECS"

3) The data entities were retrieved from the
database for update. (DM generated file)

ENTRY: "ammddyyhhmms"” (session identifier)

a: Initial character must be "a”

The remaining fields are numeric. Any two
position value (ie. mm, hh) which is less than
10 must use a 0 in the first position

(ie. Jan->01).

mm: Month

dd: Day
¥y: Year
hh: Hour (24 hour clock)

mm: Minutes
8: Seconds (10’'s position value)

s
Pl

TOOL ID: Contains the code identifying the tool. Used

<

o by the tool to insure the data is formatted for its use.
I Data manager uses the TOOL ID to help determine the format
7 of the standard data file. Codes currently used:
- 1) SADT -- SADT Editor (Sun)

2) DD -~ Data Dictionary EBditor (Z-100)
: PROJECT: Contains the project name of all the data
e entities in the file. May contain up to 12 characters.
}; PHASE: Identifies the phase of the data entities in
" the file. Codes currently used:
Py 1) REQ -- Requirements Phase
Ty e
3 ' 2) DES ~- Design Phase

4
! 126
7

Ral _tal "ol Sab_-al. Ale Ale b A AUa A AR Sk Sl dhEl

&

%F\

- f. t"'f*
R

a
P

- .Q}. 3) CODE -- Code (Implementation) Phase

)
B4

TYPE: Identifies the data type of the entities in the
file. Codes used:

1) ACT -=- Only ACTION entities are in the
file.

2) OBJ -=— Only OBJECT entities are in the
file.

3) BOTH -- At least one ACTION entity and one

OBJECT entity are contained in the file.

NOTE: These values may not be changed without
extensive modification of the DM.

START/STOP TIME: Contains the start and stop times
used in tracking a tocol’s usage. Entry format:

1) DM initialized value prior to tool usage:

START -> 000000
STOP -> 111111

2) Format of values provided by a tool after an update
transactions:

ENTRY: "ddd mmm dd hh:mm:ss yyyy"
SAMPLE: "Wed Nov 18 12:12:03 1987"

ENTITY LIST ENTRY: Each entity entry consists of three
fields. Each entry corresponds to an entity in the file.
The order of the entities in the SDF MUST correspond to the
entity list entry order. *NOTE: ACTION type entities MUST
occur before object type entities when the file contains
both types.

FORMAT:

ENTITY NAME: Pos 0-24 (25 char)
BLANK: Pos 25-29 (5 spaces)

ENTITY TYPE: Pos 30-32 (3 char)
BLANK: Pos 33-38 (6 spaces)

ENTITY STATUS: Pos 39 (1 char)

ENTITY NAME: contains 1-25 characters

127

I L R s
B N R W e VR VP ICONITATES VS ' WOAONOEON

5
a
.

Gl

R T

»
U I

v o
3

(4
L]

[R B g

RIYWY 1N

P’
*
s

PPl ARSNAAIN AN G

\\\.‘\‘ []

)

%)

g, PR I L R B I
SRRy LA DR

b i Al e Ao ‘e ' S gt il Al el

ENTITY TYPR: Codes used:
1) ACT -- ACTION entity
2) OBJ -- OBJECT entity

ENTITY STATUS: Indicates the update status of the
entity. Codes used:

1) R -- Retrieve status, do NOT update. Can also
be used by a tool to indicate an entity has not been changed
during an update.

2) W -- Write entity to database. 1In new writes,
W is the only acceptable status.

3) D -- Delete entity. May only be used in an
update transaction where the entity has been checked-out.
NOTE: A delete entity does NOT have a corresponding set of

data elements in the file. Only entities in a W or R status
have data elements in the file.

Data Elements

The data elements in the standard data file are grouped
by data dictionary entry. The order of the elements are
dictated by the Tool Data Definition Table order. This
order must be maintained in files submitted by a tool to the
DM for database update. The entity’s name must be the first
data element record in each entity. A second requirement is
that every data element in a data dictionary entry be
contained in the SDF, even if it has an empty ("blank")
contents. The DM assumes a missing element was lost during
file transfer and generates an error. The DM will also
build the element with a blank contents field when the

element’s relation does not contain an entry.

128

.
- \'1 :' "‘
-~

) At

. Format
Figure 3 shows the format of a data element. Figure 4

provides an example data element.

DATANAME

FIELD LENGTH

MULTI-LINE INDICATOR

NUMBER OF FIELDS

DIRECTION

TYPE

CONTENTS

Figure 3. Data Element Record Format

diname
25
N
1
.v Xz
> OuT
::': CRT Output
~
Y
| .

Figure 4. Sample Data Element Record

FIELD VALUES

.l "‘J"

DATANAME: Corresponds to the dataname maintained in
the Tool Data Definition Table.

3y

129

. N W A a T a A - - S B U A Seld
R e T R
.:KA:‘{A."AKA.{A.L MLM Mm~mmmhmum&u LL.{LTA-{h{&::h‘;&'uA.A\&{L\&‘&T\A-KM{AALW&NMIAA

_ FIELD DESCRIPTION: Field length of the data element’s
N contents field. Values: 1 - 60.

MULTI-LINE INDICATOR: Indicates whether the field
consists of multiple lines (ie. description). Values Y or N.

NUMBER OF FIELDS: Indicates the number of fields
, associated with a group field.

ie. ALIAS: (3)
WHERE USED: (2)
COMMENT : (1)

DIRECTION: Indicates the direction of the element.
Used in instances where the same DATANAME applies to
different data dictionary fields. Corresponds to the

element’s database direction value. Field contains "tzzx"
when it is unused.

-

EXAMPLE: INPUT FLAG
: OUTPUT DATA

DIRECTION: IN
ouT

{ ‘iﬂ In the example above, both entries have the same

1 DATANAME (paname). To differentiate between the two,
DIRECTION, in conjunction with TYPE, is used to indicate

: which specific data dictionary field the element belongs.

TYPE: Indicates the data element’s type. Corresponds
to the element’s database type value. May be used with the
. DIRECTION field or may be used by itself for elements which
are dependent only on type, ie. INPUT, OUTPUT, CONTROL,

MECHANISM in the acitivityio relation. Field contains "%%%"
when unused.

CONTENTS: The database contents of DATANAME.

File Format

[N Dl b ol 4

A complete example of the standard data file is shown
in Figure 5. This example contains BOTH action and object
| entities. If the file contains only ACTION or OBJECT
; entities, the headers used for the other entity type are not

included in the SDF,
b 130
b

- » e -,y O R N SO L DAL UL LN Yo S S TSPy S
> P v PG N P " ¢ USRS OR R O
TGNy o R G T O T A R VTt e

.

#@@BEGIN@EO#
#@$#HEADER BEGIN#@#
a08048710045
SADT
; ECS SYSTEM
| ACT
BOTH
000000
111111
Build Database ACT W
CRT Input OBJ R
#@3HEADER ENDi@3
###ACTION TYPE##4#
@#3START#%e@
aname
N
1
22
XX
Build Database

o

0 (Remaining data elements in Build Database}

a2 [o]

) @##STOP#4@
###ACTION END###
###OBJECT TYPE###
@##START##@
diname
N
£k
b3 $
CRT Input

o

0 {Remaining data elements in CRT Input)

o
@##STOP# i@
##30BJECT END###
#@@END@@#

Figure 5. Sample Data File Format

o S

S O

131

'\‘h»*--- --------- J‘.J’u"‘-l'('-f' INEINE \’ T KRN L) .. -4
L h A WS e 4*‘ el “*ﬂ'."’. 15 SO o"‘ SV ot ‘uv' y 0;'0.'0 "0“':'.'0.'0 .' ‘ q'l.a

.
o
ilﬁ {f;ﬂ Appendix C: Data Manager Database Relations Definitions
!
vji Overview
o
:;; The Data Manager (DM) uses various Ingres relations to
“1 control its data retrieval and update functions and to
jEﬂ support session control. This appendix examines these
.:} relations and their formats. An overall example of how the
t
{ relations are used is also provided.
.E Data Retrieval and Updates
-:’...'-
N The following relations are used to identify, retrieve,
[]
:nf and update the data elements used in the standard data file
7 (SDF) .
0 qbl Tool Description Table
(_J ® Tool Data Definition Table
O Entity Identification Table
A Multi-level Transaction Table
.

- -

x

Tool Description Table

O

;:; The Tool Description table contains the name of the
b .:-'
.ﬁ: Tool Data Definition Table toc use in generating and reading
120

';' the SDF. The Tool fescription Table contains a data

R e

L
“5 definition table entry for each phase and type of data each
,.

~} tool uses. This section examines the Tool Descriptiocn
On s

o Table’s Ingres relation (Fig. 1) and establishes its
‘&
D .
o attribute formats.
e

7

e

9. ~
L
oo,

s

4; 132

L

Y{.'

hN

’,

-'u'" : - A R R N A A L Y Ny Sy ~ [A T T N N e - » oy . e N - 1;-.
v 2] AR st AT T MR YNNI s S QAT o0 2 43 Bl et S

N O / .
e e T A e W T T Y T R v

PO
1 . tooldesc_tab
\ X code clo
P t phase cé
- X type cd
Y def_table cl2
3: description c60
(
'iz Figure 1. Tool Description Table Relation
N
ok Format
4
"\ CODE: Tool Code. Code used to uniquely identify the
LA tool, ie. DD.
Y
f;i PHASE: Phase of the data entity to be manipulated:
A REQ, DES, CODE
[)
Hd TYPE: Type of data to be manipulated: ACT or OBJ
>~
;:j DEF_TABLE: The relation name of the Tool Data Defini-
oL tion Table describing the data used by the tool in the
?L 6&& indicated PHASE and TYPE.
®
ho DESCRIPTION: Means to provide additional information
v about the tool, ie. "SADT Editor - Sun Workstation REQ
SN only".
h -
@) Tool Data Definition Table
A
>
j& Contains the information necessary to retrieve data for
NN
‘:: a tool, generate the tool’s SDF, read the tool’s SDF, and
.Q} perform the required updates. This section examines the
N
Y
?ﬁ table’s Ingres relation (Fig. 2), specific requirements, and
s
N
Sf its attribute formats.
®.
W Requirements
N,
Y.,
oo 1) RELATION NAME: Each phase and type of data entity
-:i used by a tool requires a separate data definition table to
v describe it.
9. -
$¥ 385 Example: sadtdata -- SADT Data Item
.R : sadtact -- SADT Activity
O
Ve 133
|]
®

Y Py L L N S ~ R A 2y o IR T S R A N N '.?}."}“ S A L A .I
]) i~ . - - * a®

..........

-V e T T T e 'T

Tool_Data_Definition_Table
dataname cl2
relname cl2
keyl cl2
key2 cl2
flddesc c4
entryclass c2
nlfld cl
nunflds c3
direction cl0
type clo0
delflag cl
version cl2

t line i2

Figure 2. Tool Data Definition Relation

2) TABLE ENTRY ORDER: The table entry order is
crucial. The table order dictates the order in which the DM
writes data to the SDF and dictates the order the DM expects
the data elements to be in when reading the SDF for updates.

The FIRST entry in the table must be the entity’'s
attribute name. This is dictated by the DM which uses the
field for validating updates and retrievals. The current
first entries are the following:

REQ
ACT: activity aname
OBJ: dataitem diname

DES
ACT: process prname
OBJ: parameter paname
CODE
ACT: module modname

OBJ: variable varname

3) FIELD MARKERS: The table contains attributes
(fields) that are not used by every element. Some of the
attributes are very specific to support certain elements.
These fields must contain "*%f%" when they are unused because
the DM checks for this value to determine if the attribute
is required for a transaction.

Format

134

e aah ek iad mhaiAE abl Ak ob. g Aty ot aaie s s o ol gl st Sl Aal Sal Balk Aal Rl it At el A ;-v-u--—u—--T

DATANAME: Data element name. The field has two
purposes:

1) Attribute of the data element.
ie. aliasname

2) Corresponds to dataname used in the SDF.
RELNAME: Relation name containing DATANAME.

KEY1: Key attribute name used to retrieve and update
DATANAME. It is compared to the "entity name"” being
accessed.

ie. range of r is relname
retrieve (x = r.DATANAME)
where (r.KEY1l = entity-name)

KEY2: Currently unused by any relation. Provided for
future tools which require another key to access DATANAME.
If unused, must contain "$2x",

FLDDESC: Field length of the Ingres DATANAME attribute.
Also used as the FIELD LENGTH in the SDF.

ENTRYCLASS: Entry classification of DATANAME. The key
field used by the DM to identify the retrieval and write
routines to use with the element.

MLFLD: Multi-line field indicator. Contains either Y
or N. Corresponds to MULTI-LINE INDICATOR in the SDF.

NUMFLDS: Number of fields in a single relation to be
retrieved or written to the database.

ie. aliasname 3
whereused 2
comment 1

DM builds retrievals and updates using all three
fields. It retrieves each table entry from n...1 for each
database access. After retrieving the table entries, the DM
then performs the retrieval or update.

DIRECTION: Direction used in certain relations (ie.
processio - IN, OUT) to differentiate among the entries in
the relation. For DATANAMEs which do not use DIRECTION the
field contains "f%%x",

NOTE: ALL relations which require a direction
field MUST use the attribute name: direction.

135

R s A A PP N RS A RS “ s ST
"? o e o g N Wy S T NN .
S8 Sy

TYPE: Type used in certain relations (ie. activityio -
MECH, CON) to differentiate among the entries in the
relation. For DATANAMEs which do not use TYPE the field
contains "®33",

NOTE: ALL relations which require a type field
ST use the attribute name: type.

DELFLAG: Delete Flag. Contains either Y or N. Used by
the DM to control data deletions.

DELFLAG NOTE:

1) Certain data elements used in an entity do not
get deleted when the entity is deleted because
they are "owned"” by another entity (ie. activityio
elements used in a data item entry belong to an
activity entity).

2) Only one element in a relation is marked for
deletion. This deletes the entire tuple as-
sociated with the element.

ie. aliasname Y
whereused N
comment N

3) The DM performs two types of deletions:

a) Entity Delete -- Delete entire
entity. Deletes all entries with
DELFLAG = Y.

b) Update Delete -- Delete performed
before writing an updated entity back to
the database. For these deletes,
DELFLAG = Y and VERSION = "%2%3" are the
only entries deleted. This prevents
deleting version information associated
with an entity.

VERSION: Version attribute name. Used with entries
having an associated version (ie. ahistory).

LINE: Line number of the DATANAME entry in the table.

The table is sorted by this field to help insure the data
elements are retrieved in the proper order.

136

P

L

ey

N Entity Identification Table

B N
r The DM uses the Entity Identification table (Fig. 3) to
u . .
Q,j determine the presence of a data entity in the database.

.
-i: Used during retrieval and update transaction verification.
'

b

K. ent_id_table

i” ¥ phase cb

A ¥ type cd
(relname cl2

K> keyfld cl2

Y

:: Figure 3. Entity Identification Table Relation

.'\l

d

. The following entries are currently used:

REQUIREMENTS PHASE

N

o e REQ REQ
N G ACT OBJ

o activity dataitem

x aname diname

.%

. DESIGN PHASE

v DES DES

7 ACT OBJ

< process parameter

i, prname paname

®

- CODE PHASE

F'J

" CODE CODE

o ACT OBJ

® module variable

. modname varname

ii Multi-Level Transaction Table 3
’.

'g P The Multi-Level Transaction Table contains the informa-
2 e

& 7 tion necessary to perform multi-level retrievals and

L

' 137 ‘
® |
hed |
’I

" - ", L R Y N ot e AR AT W
R R
ST LAV, Wy, : O N .

0 O 1 r 0 ! t VY TW PN LUTYUWUW

updates. This section examines the table’'s Ingres relation

A 4" "l

(Fig. 4) and attribute formats.

{

: ml_trans_tab

'. % toolcode cl0
y ¥ phase c6
] x type c4
. levels c2
X par_name cl2
4 par_rel cl2
f par_key cl2
y sec_name cl2
v sec-rel cl2
- sec_key cl2
y sec_alt_name cl2
Py sec_alt_rel cl2
g sec_alt_key cl2

Figure 4. Multi-Level Transaction Table Relation

(7 @ Format
TOOLCODE: Tool code (ie. DD, SADT).
‘¢ PHASE: Phase of data: REQ, DES, CODR

: TYPE: Indicates the type of multi-level action to
perform. The acceptable types are the following:

1) ACT -- Action entities only. Does
not use the Secondary information.

2) OBJ -~ Object entities only. Does
not use Secondary information.

3) BOTH -- Uses both Parent and
Secondary information.

PR
SR Y T,

NOTE: The values used in the Parent and Secondary
B entries may differ from the entries used to identify only
- the Action or Object entities.

. LEVELS: The maximum number of levels of data a tool may
[retrieve. Values are 0-99. Level 0 identifies only the

' oA par_name and any sec_names and sec_alt_names associated with
) the parent. This is only for a BOTH request. An ACT or OBJ

-

138

- o, . - » . ot et I T N I A S SN A L IR S ST I
A S e S T ‘"{"V\‘ B N L R Oty CALALGOONS ENT,
W e, Lo o) L Ol pa X a0 N) 3 .

- 0
RERT LR,

Level 0 entry is the same as asking for only the single
AR entity.

PAR _NAME: Farent Name. The field contains the entity
name pointed to by the transaction file parent name.

PAR_REL: Parent Relation name.

PAR_KEY: Parent Key name. (Attribute name)

EXAMPLE: par_name = loaname
par_rel = ahierarchy
par_key = hianame

range of r is par_rel
retrieve (r.par_name)
where (r.par_key = trans_parent name)

Secondary Entries

The secondary entries are used only in BOTH type
transactions. These fields correspond to the data type
opposite of the parent entity type.

SEC_NAME: Secondary Name. Identifies the entity name of
L an entity associated with one of the entities identified by
0 PAR_NAME.
SEC_REL: Secondary Relation Name.
SEC_KEY: Secondary Key Name.

EXAMPLE: SADT Requirements Phase BOTH transaction

Parent Secondary
name: loaname name: diname
rel: ahierarchy rel: activityio
key: hianame key: aname
Procedures: Based on above example.
Tool: SADT
Phase: REQ
Type: BOTH

Levels: 1
Parent: parent_name

1) Retrieve all activity names (loaname) pointed
to by parent_name.

-

139

R N e

e el e ikl A A mrh ars aih ois aih ats ad and sl odh oASc ahs*alniadai et Jhet kol kel ek d TR TYYTEWVTYYLY

E; e 2) Repeat Step 1 until all requested levels have
SO been retrieved or no new activities are identified. For
these successive retrievals, use the activity names iden-
tified in the previous level for the key rather than the
parent_name.

3) After all the activities are identified, the
data items (diname) are retrieved. These entities are
identified by using the identified activity names (aname =
loaname) from Steps 1 and 2.

Secondary Alternate Entries

The alternate entries are provided to support the
special cases wheie an entity may be identified in a
relation separate from the secondary relation.

An example of this is shown below for the Design Phase.

EXAMPLE: Design Phase

Parent Secondary Alternate
name: prcalled name: paname name: iopaname
rel: prcall rel: processio rel: papassed
f{h key: prcalling key: prname key: prcalling
®
Procedures: The procedures for alternate entities is
the same as the above procedures but Step 3 is repeated
using both the secondary and the alternate information.
Session Control
The following relations are used to support the DM
session control functions.
g Session Identification Table
" Session Entity List
N Entity Owner Table
> Back-Up Directory Name
X
{ J
5 Session Identification Table
P
‘E The Session Identification Table tracks each active
4 segssion and maintains information describing the entities
[)
-fﬁf used in the session. This section examines the Session

R
A AT T L

WU RTENE N SN WL WS RFow .. Wl 'VT

Identification Table’s Ingres relation (Fig. 5) and es-

tablishes the attribute formats.

sess_id_tab

% session_id cl2
project cl2
parent_val c25
levels c2
phase c6
type c4
owner c20
tool_code cl0

Figure 5. Session Identification Table Relation

Format

SESSION_ID: Session identifier in the SDF. DM uses
this field to verify if a file submitted for update is an
active session file.

-
L

$)e PROJECT: Project name of the data contained in the SDF.

PARENT_VAL: Parent name used to retrieve the S8DF
entities. Blank if the entities were not identified using a
multi-level retrieval.

LEVELS: Number of levels retrieved in a multi-level
transaction. Blank if the SDF was not generated using a
multi-level retrieval.

> 22

.
ls_ J\J

PHASE: Phase of the data in the SDF (REQ,DES,CODE).

*e) . l\'.

TYPE: Type of the data in the SDF (ACT,OBJ,BOTH)

“
(E'Y

OWNER: Owner name provided in the transaction request.

TOOL_CODE: Tool code (ie. DD, SADT).

‘.' > @ N A

Session Entity List

The Session Entity List is a relation which monitors

all checked-out data entities. This section examines the

o

141

s Y - o gt
- }r-l")'.
L o gy P

o e A

'w

-,

-.{ JORPLN

-

-
., 5, & 4
ala ™

x &
b 2e]
2.

hJ

@)

_.
RAOTH

SOR

-
ll.!.
e
..
-
b
-
»

!

A AN Sy gty A Sy R TR S
H PRERI O FLPC I AR ARORCSES ULV RO A L CR I ANTIE RA N,

Session Entity List’s Ingres relation (Fig. 6) and es-

tablishes the attribute formats.

sess_ent_lst

% gession_id cl2

¥ name c25
type cd3
status cl
chkin c3

Figure 6. Session Entity List Relation

Format: The following entries are made for each
checked-out entity. A single entity may have several
entries in different sessions, which are identified by the
session_id.

SESSION_ID: Session identifier used in the SDF and
Session Identity Table.

NAME: Data entity name.
TYPE: Data type of the entity: ACT or OBJ.

STATUS: Identifies the update status of the data
entity.

R -- Read only. No modifications allowed on
entity.

W -- Write. Entity may be modified or deleted
during the session.

CHKIN: Used by the DM when checking-in an updated
segsion file. Values are "IN" or "".

Entity Owner Table

The Entity Owner Table is used by the DM to determine
an entity’s owner when being checked-out or deleted. This
section examines the Entity Owner Table’s Ingres relation

(Fig. 7) and establishes the attribute formats.

142

. T e Tt -

2 e e T]

Pad e |

™ gy

gl
f
R

-f

A

,-/l'
r

entowner_tab

2 phase cb

¥ type c3
relname cl2
keyfld cl2
owner_attr cl2

Figure 7. Entity Owner Table Relation

Format

PHASE: Phase of the data entity being requested for
update. (REQ,DES,CODE)

TYPE: Type of the data entity being requested for
update. (ACT, OBJ)

RELNAME: Relation name containing an entity’s owner
name. Currently, all entity owners are identified in the
entity’s History relation.

KEYFLD: Key attribute name in RELNAME which corresponds
to the data entity name. Currently, Xname where X cor-
responds to the entity’s type (ie. a -~ activity, pa -
parameter).

OWNER_ATTR: Attribute name in RELNAME which contains
the entity’'s owner name. The contents are compared against
the transaction owner name. Only entities where these two
values are equal may be modified. Currently, author is the
attribute name which identifies an entity’s owner.

Back-Up Directory Name

The Back-Up Directory Name relation (Fig. 8) consists
of a single entry containing the name of the directory which
contains all session back-up files created while using the
database. These back-up files are used primarily for error
recovery. The back-up file name is the same as the file's

session identifier.

143

AT R S TR AT AT AN
mw Y ﬁ'mmim h:&dm;-;.xu J.;.A-I‘

aa a8 g a2 4 A o b o ai acd ot aie 3a oRa _ha la lol fat Lok ded L s b m Aa S adiada dvtadi. aia b ol tak el tas iaf Bl had dod dnd gl B A 4

-.".h

X - AL
~

-

bkup_dirname
dir_name cl100

{ Figure 7. Entity Owner Table Relation

Format

DIR_NAME: Contains the FULL path name to the directory
being used to store the back-up session files used in this
database. This is a REQUIRED field. The DM will not run
without a valid entry in this relation.

”o.,

EXAMPLE: " /course/course/ee690/fa87/session_bkup.dir/"

: NOTE: The blank before the first / must be included.
! No space can follow the last /.

Complete Sample Session

The following example shows the steps followed in a

{ 63 complete session.
¥ Transaction Parameters:
r Tool - SADT
! Phase - REQ
_ Type - BOTH
S Parent - Parent_Name
Levels - 1
Sesgsion Retrieval
' 1) Build list of activities and data items
3 identified using the ml_trans_tab.
i 2) Use the ent_id_table to determine which of the
B identified entities exist in the database. Also
. identify the status of the existing entities.
3) Use entowner_tab to determine the owner of
existing entities.

5 4) Add the valid entities, their status, and the
L associated session identifier to the sess_ent_lst.

L S

-:'}",

" 5) Enter session in the sess_id_tab.

144

Al T T s T T e e T T T A T S T

U TV TN

6) Use the tool data definition tables to retrieve
the activities and data items which are written to
the SDF.

7) Make back-up copy of the completed SDF using
the directory contained in bkup_dirname.

1) Perform updates.

2) Submit modified file back to DM for database
update.

Session Update

1) Verify the SDF session id is a currently active
session using the sess_id_tab.

2) Identify new entities to be written to the
database. Use ent_id_table to determine if the
entity already exists. Error if entity name is
already used.

3) Check for invalid update status using the
sess_ent_lst (ie. a W status submitted for an
entity checked-out in a R status). Error if
invalid status detected.

4) Check all entities back in by setting
sess_ent_lst.chkin = "IN".

5) Set all entity statuses to R which were not
checked-in.

6) Perform updates using the appropriate tool data
definition tables.

6a) Any errors encountered at this point
require the use of the back-up session
file to perform error recovery.

6b) Bxit

7) Delete all sess_ent_lst entries identified by
the SDF session id.

8) Delete sess_id_tab entry identified by the SDF
session id.

9) Delete back-up session file.

145

Tuams"w

oh N

K

e

:." .s .":'-" v" .‘(.) . ’I 'Ai A‘I _-..: ‘e

AN "a
‘ LH LN [}

N
L
By

& LTS LY I] ‘f
SR LG

. \.l‘q

Appendix D: User’s Manual for the
SEL Data Manager

Data Manager Overview

The Data Manager (DM) is a tool-database interface
which permits any of the Software Engineering Laboratory
(SEL) tools to use a central Ingres database. The basic
requirements to use the DM are to have an account with
Ingres access and access to the program dm. Your instructor
will provide the appropriate login name and work directory
necessary to use the DM.

The DM provides two basic functions: data retrieval and

database update. These two functions consist of three
steps: file transfer, DM transaction file generation, and DM
execution. File transfer is necessary to move a tool
generated data file to the DM system’s working directory for
updating the database and toc move a DM generated tool file
to the tool's system. Transaction file generation builds
the instruction file used by the DM to perform its database
transactions. The transaction file is built using an
interactive menu. The remaining step is the execution of

‘. the DM using the generated transaction file.

[

The following sample scenario shows the steps which
constitute a typical session.

Sample Session: A user will execute dm to
generate a transaction request to retrieve for
update the needed data entity(s) from the data-
base. On receipt of the request, the data manager
will retrieve the data and provide this data back
to the requestor in a session file using the
provided session file name.

The user will perform the necessary file
transfer procedures to download the session file
to the appropriate tool system. The user may
manipulate this set of data entities by modifying
or deleting the entities or by adding new entities
to the file. When all changes have been made to
the file, the session file must be transferred
back to the DM system.

146

»

i The user executes dm to generate a transac-
oy tion request to update the database using the
modified session file. On receipt of the request,
the data manager will upload the data to the
database. At the successful ccompletion of the
update, the session is terminated.

Each step in using the DM is discussed with sample
sessions provided. Because each tool may reside on dif-
ferent systems, a separate attachment is provided for each
tool describing the file transfer procedures to follow when
using a particular tool. These attachments also include any
special DM transaction requirements and limitations.

Please read the following instructions AND the ap-
propriate tool attachment before using the DM.

File Transfer

The DM reads and generates tool files. For data
retrievals, the DM generates a tool file which must be
transferred to the tool system. You are responsible for
performing these transfers.

‘)0 Procedures: (Refer to the appropriate tool attachment)

RETRIEVALS: File transfer is the last step and
occurs after the data manager finishes execution.

UPDATES: File transfer must be performed before
executing the data manager.

Transaction Generation

The DM's execution is directed by a transaction file.
This transaction file is generated using the interactive
menu provided by dm.

Procedures:

1. For updates, transfer the tool file to the DM
gsystem.

2. Login to the DM system using the instructor
provided login account and change directory to the proper
working directory.

R o
R _\,' s

147

e a s mdend adh el s fe B3 She ate die A ok safcal cal el dni Sull cat Ank Sl Snd Sk Sad lad i) "Y‘.""‘"-V‘l‘l‘q'."'-""’."'.'".".’“",?'_W

Example: (SSC system)

“"TL.K,‘

.
'S

login: ee690
password:

A o

SSC% cd fa87<CR>
3SC%

8
&
e

3. For updates, check that the file transferred in
Step 1 is in the directory. (SSCX 1ls -1 filename<CR> ->
provides date the file was created to prevent using an old
version.)

For retrievals, the DM creates a file to contain ,
the retrieved data. If the file already exists, the new
data overwrites the old contents. If the contents of any of
the old files are needed, either provide the DM a different
sesgsion file name for the new contents or rename the old |
file (SSCX mv oldfile newfile<CR>).

4. Execute the Data Manager:

SSC% dm<CR>

This generates the following menu:

N i Jaad a o a ok Bad Bad gl A Ak Sies s ok Snd dhan Red hes dind Aed et Jhat e

sx3xxtxx BEGINNING OF DATA MANAGER MENU ZXX%XX$5%%X

T,
- \"
ot DATA MANAGER EXECUTION MENU
1. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit
ENTER CHOICE:
Enter transaction file name:
DATA MANAGER
TRANSACTION RECORD MENU
TOQOL SELECTION
1. Sun SADT Editor
2. Data Dictionary Editor
ENTER CHOICE:[1
DATABASE NAME:[--=—-~~wceea)|
SESSION OWNER NAMR:[-===cceccrmmccccccee]
o
‘b. TRANSACTION INDICATOR SELECTION
1. RETRIEVE DATA
2. RETRIEVE DATA FOR UPDATE
3. WRITE NEW DATA
4. WRITE UPDATED DATA
5. DELETE ENTITY
6. ABORT SESSION
7. EXIT TRANSACTION MENU
ENTER CHOICE:[]
SESSION IDENTIFICATION:[-—-c———meeaa]
SESSION FILE NAMEB:[-===ccc e e e e 1
PROJECT:[=-==== e e]
TYPE SELECTION
1. ACTIVITY
2. OBJECT
3. BOTH
A
e ENTER CHOICE:[|}
149
'''''' BRI SR A PURTATATSESFAT IS ¥ e i SN A AN A A it ':‘.r‘-',f'x
(A’\{.ﬂ.{\{\ AR AN a..'?.. t i ..AP.-‘_ .L.':-.u.&b. LN, ’L.-...n}: " ms&w;.;&m‘;‘fif:lf:fn (IXA.M

-
~
oS
)
" =
".
"n

o
'
I
®
.ﬂ

=

)

iy

TN

L4

TRANSACTION ENTITY SELECTION
1. PARENT/LEVEL TRANSACTION
2. SPECIFIC ENTITIES

ENTER CHOICE:[]

PARENT NAME:[-——=——-——ommmmmmmemme o]
LEVELS: [--]
ENTITY NAME:[-—=-—————-—memo—mmemmee]

ENTITY TYPE
1. ACTION
2. OBJECT

ENTER CHOICE:[]

ADD ANOTHER ENTITY (Y or N):[]

TYPE OF DATA MANAGER EXECUTION

1. Background (Terminal remains available for other uses
during DM execution)
2. Foreground (Terminal is used exclusively by DM and is

unavailable during entire DM execution)
3. Exit

ENTER CHOICE:
$3x3xx2x2x3322x END OF DATA MANAGER MENU XXX3Xxxxsx¥xx

$INOTE: The menu presented above shows every field used for
any type of transaction. Not every field is used for every
transaction. Only the fields required for a specified
TRANSACTION INDICATOR will be presented. You must provide a
valid answer for any field presented for a particular
transaction. The requirements and use of each field is
presented below.

FIELD REQUIREMENTS: (NOTE: All fields are case sensi-
tive)

TOOL SELECTION: Determines the format of the tool
file the DM will read or generate.

150

' ‘;."\' AL "-‘r"\- S .",f:’)ﬂ'

NN
AR R

Wy e NG CRY

PN AN R ey 1%
P \'.. (}'

-~
OO W GRRIERERLIY,

-

S AT N e T A T AT AN
S A RN
0 D 0 Lalhe Ll LN LT

a2,

','\:"f J‘l’ .

5
P

w il SN
r .
bt

(et]
I‘ '.‘
fati t s

.,T.
> '| ..' "‘
O

2

o,
e
PR
P

Tt
LA A A

."‘_'.. ‘
R0

-.,
AR
2 PP

. -l:. ."I\\
P P

Y

r e’

DATABASE NAME: Database containing the tool data.
Provided by course instructor.

SESSION OWNER NAME: Name used to determine user
update and retrieval privileges, only the AUTHOR may modify
an entity. Users should try to use the same name as the one
used in the entity’s AUTHOR field. (SUGGESTION: Maintain
consistency of AUTHOR name of all entities used in a project
by you and your team to permit easy update and retrieval.)

TRANSACTION INDICATOR SELECTION:

1. RETRIEVE DATA -- Retrieves data without
checking for ownership. User is not permitted toc modify any
entities retrieved in this manner. Retrieved entities are
stored in the session file specified by SESSION FILE NAME.

2. RETRIEVE DATA FOR UPDATE -- Retrieves data
which may be updated. This transaction generates a session
which tracks the entities which were checked out and their
status. The status of each entity is maintained in the
session file. The status is either Retrieve or Write. Only
the entities in a Write status can be modified. The updated
entities are resubmitted to the database using 4. WRITE
UPDATED DATA. (3S3ATTENTION: Control files are generated
for each session. No one can modify any entity you have
checked-out in a Write status. If you do not want to submit
the changes you made to the database, 6. ABORT SESSION may
be used to release all your checked-out entities. To modify
entities which belonged to an aborted session, the entities
will need to be checked-out again.)

3. WRITE NEW DATA -- VWrites all new entities to
the database. This option is used when the tool file
contains all new entities which are not currently in the
database.

4. WRITE UPDATED DATA -- Used in conjunction
with 2. RETRIEVE DATA FOR UPDATE. When all modifications,
if any, have been made to the checked-out data, including
addition of new entities, the session file is submitted to
the DM for database updates.

5. DELETE ENTITY -- Used to delete entities
which are no longer used or needed.

6. ABORT SESSION ~- Used to release any
entities which have been checked cut. Requires the session
identification of the checked-out data. The session id is
shown in the .res file generated when using Background
execution (option 1). For Foreground execution (option 2)

151

Ldhat Ant Bak Bal Aal Sok Aol Sak Hall Sl Sol S

b |

coman
e e
8

v L
-
-

LS -\.’i-:"'"k"'_‘;'.'\'f“' e

-
PR S P P r s 4

-

]

PR Y

a2~ AP

(] v

¥ _ JClCC Ll ¥,

T
PoEdNs

‘.

LR

)

-

& 4
.

jobs, the session identification is the fourth line of the
session file (SESSION FILE NAME with a .dbs extension).

7. EXIT TRANSACTION MENU -- Exit without
processing the transaction.

SESSION IDENTIFICATION: Identification of the
session to be aborted. Format: Field always starts with a
small a. Example: SESSION IDENTIFICATION:[a10318712345]
(*NOTE: The session identification is provided at session
creation time. If this is unavailable, the session iden-

tification can be found on the fourth line of the session
file.

SESSION FILE NAME: For retrievals, contains the name
of the file to which you want the retrieved data to be
written. For updates, contains the file name the DM expects
to contain the entities necessary to perform the update
transactions. Do NOT use the .dbs extension.

PROJECT: The project name of the entities. This is
a very important field and MUST correspond to the project
name of the entities to be retrieved or updated.

TYPE SELECTION:

1. ACTIVITY -- 1Indicates that only Activity
entities are to be used. (ACTIVITY, PROCESS, MODULE)

2. OBJECT -- 1Indicates that only Object type
entities are to be used. ({DATA ITEM, PARAMETER, VARIABLE)

3. BOTH -- 1Indicates that both Activity and
Object type entities are to be used.

TRANSACTION ENTITY SELECTION:

1. PARENT/LEVEL TRANSACTION -- Allows those
tools which can process hierarchical entities a means to
retrieve/delete the entities based on the parent name. The
PARENT NAME and LEVELS are determined by the type of
entities to be used and the tool. Refer to the specific
tool attachment for additional information.

2. SPECIFIC ENTITIES ~-- Used to access the
dspecific entities. This method is much faster than the
PARENT/LEVEL method for accessing a limited number of
entities.

ENTITY TYPE: Used when BOTH is chosen in the TYPRE
SELECTION. Allows the user to indicate the TYPE of each

1562

entity. Answer the ADD ANOTHER ENTITY with a N when all the
desired entities have been entered.

DATA MANAGER EXECUTION

The Data Manager provides two types of DM execution.

1. Background -- This type of execution does not
use the terminal during processing and allows the user to
either perform other transactions or logout. This is the
recommended method for transactions containing 10 or more
entities. It is also highly recommended for PARENT/LEVEL
type transactions. The DM execution results are stored in
trans_file_name.res. The .res file shows the entities which
were successfully retrieved or written and contains any
error meusages which were generated during execution. This
file contains the DM results only, do NOT confuse it with
the SESSION FILE you provided. (HINT: The job number
provided when the DM begins execution can be used to check
the status of the execution.

Use the command: % ps alx jobnum<CR>)

2. Foreground -~- This type of execution uses the
terminal for displaying the DM results during execution.
The terminal is unavailable for other use during the DM’s
execution. This method is useful when accessing a small
number of entities, especially during retrievals because the
user knows when the DM finishes. (HINT: If an error occurs
and you need a hard copy of the error message, re—-execute
the DM using 1. Background mode.)

(%3CAUTION: Because the database is being modified during
any type of transaction, do NOT attempt to terminate the
Job. Improper termination could cause severe database
inconsistencies.)

3. EXIT -- Do not execute the DM and return to the
gsystem (%).

SAMPLE SESSIONS

The following sample sessions show the menu options which
must be completed for the varicus types of transactions
available.

153

T I RN L B I A Sk
WRLEC AR AR R ER R A

L
;
P
ﬁ e RETRIEVALS: (TRANSACTION INDICATOR 1 or 2)
et % dm
DATA MANAGER EXECUTION MENU
1. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit
ENTER CHOICE: 1
Enter transaction file name: filename
DATA MANAGER
TRANSACTION RECORD MENU
TOOL SELECTION
1. 8Sun SADT Editor
2. Data Dictionary Editor
ENTER CHOICE:[1]
iﬁt DATABASE NAME:[jtdb-==——===a]
‘
' SESSION OWNER NAME:[Team 1A--——=——m=—m-]

TRANSACTION INDICATOR SELECTION

1.

RETRIEVE DATA

RETRIEVE DATA FOR UPDATE
WRITE NEW DATA

WRITE UPDATE DATA

DELETE ENTITY

ABORT SESSION

NN

. EXIT TRANSACTION MENU
ENTER CHOICE:{1]
SESSION FILE NAME:[level0--cecememmra e e]
PROJECT: [Homework 2--]
TYPE SELECTION
1. ACTIVITY
2. OBJECT
3. BOTH

ENTER CHOICE:([3]

154

- - - - ”
o Ty o T s LA o A A BT EREE N .
A o, TN NOLIE I S PR AT ... A

) "“'v‘lv'.‘“"v'w."‘.‘!'-""'w'v‘vr*;"‘)'v'\fj
T L Aia aia ada aaa L Ml la o aa o aad iat pad 68 4oL gl Al G S A B Bl 8o g\ @GRy SbudY

e TRANSACTION ENTITY SELECTION
1. PARENT/LEVEL TRANSACTION
2. SPECIFIC ENTITIES
ENTER CHOICE:([1]
PARENT: [Build Data Interface]
LEVELS: [1-]
SUCCESSFUL BUILD OF TRANSACTION FILE

TYPE OF DATA MANAGER EXECUTION

1. Background (Terminal remains available for other uses
during DM execution)
2. Foreground (Terminal is used exclusively by DM and is

unavailable during entire DM execution)
3. Exit

ENTER CHOICE: 1
Transaction results are in filename.res

ﬁY Batch Job is: [1] 19103

155

SR S R

SacAle A% o 2le aie ke Ahe e gia dia A, Ao)-8 4 RN BRSNS FVE B LA L R .«..-—__7

_?3 DATABASE WRITES: (TRANSACTION INDICATOR 3 or 4)
RS
% dm

DATA MANAGER EXECUTION MENU

O 1. Build new transaction file for execution.
o 2. Use existing transaction file for execution.
\ 3. Exit

% ENTER CHOICE: 1

'is Enter transaction file name: filename
{
o DATA MANAGER

=2 TRANSACTION RECORD MENU

" .

2

o TOOL SELECTION

. 1. Sun SADT Editor

S 2. Data Dictionary Editor
{j ENTER CHOICE:[1]

)

A A DATABASE NAME:[jtdb-————a-o]
(D

T SESSION OWNER NAME: [Team 1A--------e-uu 1

SR

v TRANSACTION INDICATOR SELECTION
oo 1. RETRIEVE DATA

:j 2. RETRIEVE DATA FOR UPDATE
R 3. WRITE NEW DATA

- 4. WRITE UPDATE DATA

) 5. DELETE

Ny 6. ABORT SESSION

o 7. EXIT TRANSACTION MENU
[}

A ENTER CHOICE:([4]

e

oo SESSION FILE NAME:{levelO-=-—-we-mmmmme]
: _4_:

. PROJECT: [Homework 2--)

o

o TYPE SELECTION

o 1. ACTIVITY

e 2. OBJECT

;:' 3 . BOTH

‘u

2 .- ENTER CHOICE:[3]

jg i SUCCESSFUL BUILD OF TRANSACTION FILE

& 156

<

o AR et ot W Bt L a P Vo o o 0
AN o SO -

Y - 2 - ol . TV T TRAITRNI T TR R IECTTRITANT RT BT E N §F Te T WY R N7 1 B wamwr r'.v'v"-r‘"T

YRR TYPE OF DATA MANAGER EXECUTION

& 1. Background (Terminal remains available for other uses

- during DM execution)
~ 2. Foreground (Terminal is used exclusively by DM and is
- unavailable during entire DM execution)

3
w
.

Exit

&

ENTER CHOICE: 2

)
T s s

{¥x Results are printed to screen during execution %%}

-
v e
n

-~

- - Ma -2 ¢
P N
AT

s

(e

;.- " 2, - f‘ {\.'

-

Y A

DN

-.- [

«

R FLAGAOOEW IS

T b L

PN Tt

LA

-

157 |

A

[

.
0

b
.

- L L T . Lo LT P B T SRR P YV A L N AL PRI ¢ TANS I T T B e '
Y y g ALt A A D KON P s 2 """\ VRETRAPRN L 08 V- 8 Sl x- v, .0.0".0 .-'..t'l. S

»
D
b
.
.
-
By
-

DELETIONS: (TRANSACTION INDICATOR 5)

% dm
DATA MANAGER EXECUTION MENU
1. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit
ENTER CHOICE: 1
Enter transaction file name: filename

DATA MANAGER

TRANSACTION RECORD MENU

DATABASE NAME:[jtdb

TOOL SELECTION
Sun SADT Editor
Data Dictionary Editor

ENTER CHOICE:[1}

SESSION OWNER NAME:[Team lA---~--c--aee-- 1

TRANSACTION INDICATOR SELECTION

l‘

RETRIEVE DATA

2. RETRIEVE DATA FOR UPDATE

3. WRITE NEW DATA

4. WRITE UPDATE DATA

5. DELETE ENTITY

6. ABORT SESSION

7. EXIT TRANSACTION MENU
ENTER CHOICE:([5]

PROJECT: [Homework 2--]

TYPE
1.
2.
3.

ENTER

SELECTION
ACTIVITY
OBJECT
BOTH

CHOICE: (3]

158

\rv—_ PR L aal o B oA aon A.a a4 oS a'd a‘e Al ave o i addsadd otic o dac L et _Sal dab J Lt dal l""!'w"V'L"L'TW‘.W'Y"V\-\-‘"T'T‘v‘.v“"““"‘“-I‘I‘l' d ™
.~::

3

W

R TRANSACTION ENTITY SELECTION

N s 1. PARENT/LEVEL TRANSACTION
i 2. SPECIFIC ENTITIES

N ENTRR CHOICE:[2]

2 ENTITY NAME:[box l-=———=~-—mc-eo——c]

AYﬁ ENTITY TYPE

b 1. ACTION

N 2. OBJECT

P

K ENTER CHOICE:[1]

'l.

L ADD ANOTHER ENTITY (Y or N):[Y]

-

g ENTITY NAME:[data item l-————-———o-o]

)

- ENTITY TYPE

":- 1. ACTION

o 2. OBJECT

- ENTER CHOICE: [2]

Yol

N ADD ANOTHER ENTITY (Y or N):[N]

(R

) L]

;: SUCCESSFUL BUILD OF TRANSACTION FILE

I

Qg TYPE OF DATA MANAGER EXECUTION

N

3 1 Background (Terminal remains available for other uses
o, during DM execution)

J‘:t 2. Foreground (Terminal is used exclusively by DM and is
‘,;.\ unavailable during entire DM execution)
N 3. Exit

o

L. ENTER CHOICE: 2

\':

\ {st Results are printed to screen during execution %}
0 %

PP 1, &
AA N | IR AR RN A

ot W W W
*‘ '. l.‘u '..l‘!‘h Al l-'l'- ha, !‘. ADNANM AR R

[)

1
e
e
n_;"'
) 159
®
-
1%y
-
\‘ -nu \wv)vr S U T N W S

o I e .}“ CRLCR

&

).. Ao Aa na das s _ak e aak sk el bajb sl bl 'w-—v‘w'w‘—-w“‘quywuwn'rwu"J"WW'U-VW"LW"U'\'I’V'\J".I"J"\l"'wmr'vvwr'ﬂ\\‘,vT

SESSION ABORT: (TRANSACTION INDICATOR 6)

% dm

DATA MANAGER EXECUTION MENU
1. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit
ENTER CHOICE: 1
Enter transaction file name: filename
DATA MANAGER
TRANSACTION RECORD MENU
TOOL SELECTION
1. Sun SADT Editor
2. Data Dictionary Editor
ENTER CHOICE:[1]
DATABASE NAME:[jtdb-——--=-«~--]
e, SESSION OWNER NAME:[Team lA----==c-—-wx]

TRANSACTION INDICATOR SELECTION
1. RETRIEVE DATA

. RETRIEVE DATA FOR UPDATE

. WRITE NEW DATA

. WRITE UPDATE DATA

. DELETE ENTITY

. ABORT SESSION

« EXIT TRANSACTION MENU

e N

ENTER CHOICE:[6]

SESSION IDENTIFICATION:[a10308709154]

SUCCESSFUL BUILD OF TRANSACTION FILE

TYPE OF DATA MANAGER EXECUTION

1. Background (Terminal remains available for other uses
during DM execution) :
2. Foreground (Terminal is used exclusively by DM and is
unavailable during entire DM execution)
3. Exit
ENTER CHOICE:

S
S0

{s3 Results are printed to screen during execution %%}

160

'\".;-." AR R T S Py ARSI R R YRR L T
el 3

¥ 0 o M w7

¢ €
.

e This ends the sample sessions. Any additional ques-
xﬁ} tions should be directed to either the class DM manager or
‘ the instructor. The remainder of the User’s Manual consists
of the attachments for the separate SEL tools.

161

e s e e e e m g ra e .
o Eﬂﬁ%&ukmw;&wuﬂyxghﬁ o PO

(;r'y‘fp.‘:\"r

YTt At At AT
P IR N

ATTACHMENT 1

User's Manual for the
DATA MANAGER/SADT TOOL Interface

SADT Tool Overview

The SADT tool (SAtool) runs on the ZEUS Sun Work-
station. The database this tocol uses resides on the SSC.
The following procedures are provided for this configura-
tion. These instructions provide the basic procedures. For
more specific information concerning Data Manager options,
refer to the Data Manager User’s Guide.

SADT Tool Operation

Tool Data File Generation:

The SAtool generates two types of files when building a
SADT diagram. The files have a .dbs and a .gph extension.
The .dbs file contains the diagram’s entities in the DM file
format. This is the file which is transferred to the SSC
for database updates.

ib. ($3IMPORTANT: A .dbs file igs created anytime you store the
diagram using the SAVE FUNCTION. The file you submit to the
DM for database update MUST be saved using the Save db
option of the SAVE FUNCTION. This method performs consis-
tency checks on the data and guarantees that the file is in
the proper format for database transactions.)

SAMPLE DATABASE UPDATE PROCEDURES
STEP 1: Transfer the SAtool modified file to the Data

Manager System. Assumes the two systems used are ZEUS and
the SSC.

From ZRUS to SSC: (Method used in providing the DM data
for Writing to the database.)

ZEUS% rcp sadtfile.dbs ssc:fa87/sadtfile.dbs

LEINOTE: 1. sadtfile.dbs corresponds to the filename
you used, it is NOT the mandatory filename.

2. Use the .dbs extension on the DM system
oty STEP 2: Login to the SSC using the account provided by the
R class instructor.

162

------ ., "

e My e A" 0" a " ed"” o W g M e " AT AN LY LR S ,‘.’“-‘.'-'. A
~ -, PN AU ,r’_ PTG P S AT I Ny f‘ﬂ_f.'(,' 4 P e " LY BT P AE N APR A . S ,
o 1:&4z;]d);b;?;c::;)m::&;&ﬂb A A Y TP A S A A I A A NN AL VR G WV VU VL PR PR,

..... AL aVA gUa- gid ik ahs aAl oif AR il ol o U-T

Pl o
»

e Yot

-

o
ol
<

ZBUSX rlogin ssc
SSC Login Header Information

STEP 3: Change to the assigned working directory and check
that the file was successfully transferred.

SSCX cd fa87

SSC% 1s -1 sadtfile.dbs

-Wwrxr-xr-x 1 ee690 2199 Oct 30 09:34 sadtfile.dbs
8SC%

STEP 4: Begin Data Manager execution.
SSC%X dm
DATA MANAGER EXECUTION MENU
1. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit
ENTER CHOICE: 1

Enter transaction file name: filename

DATA MANAGER
TRANSACTION RECORD MENU

TOOL SELECTION
1. Sun SADT Editor
2. Data Dictionmary Editor

ENTER CHOICE:[1]

DATABASE NAME:[jtdb-~--—---]
SESSION OWNER NAME: [Team lA-~~=—-c—c——e-_] $:Corresponds to

author name

TRANSACTION INDICATOR SELECTION
1. RETRIEVE DATA

2. RETRIEVE DATA FOR UPDATE

_ 3. WRITE NEW DATA

N 4. WRITE UPDATE DATA

- 5. DELETE ENTITY
‘N 6. ABORT SESSION

[] 7. EXIT TRANSACTION MENU

X ENTER CHOICE:[3]

o 163

e

:‘ M N N e N e L T N Tt e e e e e N A e T T T T N :.‘_\' AN e :.' :.'_ Al A SO

.-'!J':J‘rl',f_.l'f A AL SN IEIC AL, - . . R / o

Y YN AN

LN 17920 e Yo P T T S A P T

CAalhs

LY

| A
s
Tl

SESSION FILE NAME:([sadtfile----—-----ceccc]
$3Do NOT use .dbs extension, it is appended by the system

PROJECT: [Homework 2--]}

TYPE SELECTION
1. ACTIVITY
2. OBJECT
3. BOTH
ENTER CHOICE:[3]

SUCCESSFUL BUILD OF TRANSACTION FILE

TYPE OF DATA MANAGER EXECUTION

1. Background (Terminal remains available for other uses
during DM execution)
2. Foreground (Terminal is used exclusively by DM and is

unavailable during entire DM execution)
3. Exit

ENTER CHOICE: 2

{s* Results are printed to screen during execution %%}
{2 Using foreground execution ties up the terminal %%}
{2 throughout execution. You must wait until the 2%}
{¢* DM finishes execution to do other processing or %%)
(#* to log ocut. %)

TRANSACTION COMPLETED

STEP 5: The Data Manager has finished. You may now
continue working on the SSC or logout and return to ZEUS.

ADDITIONAL FILE INFORMATION: The following 1ls shows the
two files used/created during an update transaction. The
filename.ins was created during Transaction Record genera-

tion. It may be reused, if applicable, for option 2 of the
DATA MANAGER EXECUTION MENU.

SSC% 1s
filename.ins sadtfile.dbs

NOTE: Delete both these files when they are no longer
needed. This will prevent excessive disk usage and prevent
accidental usage of the files.

164

L .
{
?.5
I,
hn
-
L
7
¢

l.(h.‘ P “‘

.... .\\\

MNRA TN ET PRV T "Te S WL . W

SAMPLE DATABASE RETRIEVAL PROCEDURES

The following session shows how to retrieve data from
the database on the SSC and transfer these retrieved
entities to ZEUS. [Assumes user is working on the ZEUS
system. If starting from the S8SC, follow instructions
beginning at the first SSC prompt.]

STEP 1: Login to the 8SC.
ZEUS%X rlogin ssc
SSC Login Header Information

STEP 2: Execute the Data Manager.

S8SCX cd fa87
SSCX dm

{33 DATA MANAGER EXECUTION MENU follows. $%)
SESSION FILE NAME: sadtfile

$(sadtfile can be any filename compatible with the
SADT tool)

{3 The results of the retrieval are displayed 23]
SUCCESSFUL RETRIEVAL <-- Indicates no errors occurred
STEP 3: Transfer the retrieved information to the SAtouol
system. $XNOTE: The .dbs file extensions. This convention
must be used.
SSC% rcp sadtfile.dbs zeus:fa87/sadtfile.dbs
STEP 4: Logout from SSC and return to the ZEUS system.
8SC% logout
ZEUS%
The retrieved data has been transferred to the ZEUS system
and may now be modified by the SAtool. Follow the Update

Procedures presented above to transfer the data back to the
SSC and update the database.

165

(,;; 3

LA L

Pl 2l

SPECIAL REQUIREMENTS

The SADT editor supports the use of hierarchical data.
This permits a user to use the PARENT/LEVELS option in
retrieving data. The SAtool is limited to only 1 level of
data to be retrieved at one time. The options available are
for a LEVEL of 0 or 1.

LEVEL O0: Retrieves
with the PARENT and the

only the activity entity associated
data items used by this activity.
LEVEL 1: Retrieves the LEVEL 0 entities and the
activity entities which are subordinate to the PARENT
entity. All data items associated with any of the retrieved
activity entities are also retrieved.

PARENT: The PARENT value corresponds the value used in
the TITLE portion of the SADT diagram.

166

Appendix E: Tool Designer’s Guide

Overview

The Data Manager (DM) supports the addition of a new
tool to System 630 by adding the tool’s data description
information to the DM’s control relations. The key rela-
tion(s) which must be built is the Tool Data Definition
Table(s) which describes the data entity(s) the tool uses.
This guide provides the procedures for defining a Tool Data
Definition Table and describes the entry classes currently
used by the DM. The procedures for defining the remaining
control relations are also provided. A description of the
Standard Data File’s (SDF) use and the Transaction Request
File’s format are also provided.

NOTE: The Data Manager Database Relation Definitions,
the Standard Data File Format, and the User’s Manual for the
SEL Data Manager should be available toc provide additional
relation and file information.

WARNING: ONLY the Database Administrator may execute
the following commands because relation permissions are
being set.

Tool Data Definition Table

The Tool Data Definition Table is the most important
table used by the DM. It is also the most complex to
create. This section examines how the table is created and
provides a description of the entry classes currently
recognized by the DM.

Table Creation

A tool requires that a Tool Data Definition Table be
established for each data entity type it uses within a
phase. Each of these tables must have a unique relation
name. The format to use for the table’s name is tool code
and data type, ie. sadtdata, ddproc. This name may be no
longer than 12 characters and must begin with a letter.

The following create command provides the Ingres

instructions to create a new data definition table. The
example is for the SADT Editor’s data item entity.

167

FATAE TR TN R PRV LTIy LR BR ROTRITERRBETERE WY RSV WV

, create sadtdata (dataname = cl2,
el relname = cl2,
NN keyl =z cl2,

key2 = cl2,
flddesc = c4,
entryclass = c2,
mlfld = cl,
numflds = ¢3,
direction = ¢l10,
type = ¢cl0,
delflag = cl,
version = ¢cl2,
line = 12)

\g

modify sadtdata to isam on line

\g

range of r is sadtdata
define pernit retrieve on r to all
\g

" iI

1
et

Entry Class Definitions

The field formats and values for the Tool Data Defini-
tion Table are provided in the Data Manager Database
Relation Definitions. The entry class determines the
database access procedures to use in retrieving or updating
a data element. All the data element’s currently used in
the six data dictionary entries can be described using only
eight entry classes. New tools should be able to use the
existing classes unless the tool requires the use of a
relation(s) which is not currently defined in the database
and shares no common characteristics with any of the current
entry classes.

This section establishes the procedures to use in deter-
mining each field’s value in relation to its use in the data
element’s entry class. The eight entry classes currently
used by the DM are provided. The table entries used by the
SADT Editor’s activity (sadtact) and data item (sadtdata)
are provided as examples. The Data Dictionary Editor’s
parametzr (ddparam) table entries are also used.

CLASS 1: Describes an ACTION entity’s identification
relation, ie. activity, process, or module. For action
entities, line 1 MUST be the entity’s name field. The DM
depends on this field being the first data element in the
SDF for entity identification during update transactions.

168

P
‘l.’. "b
?

TR T Ao B Bat B WO

append to sadtact (dataname = "aname",
relname = "dataitem",
keyl = "aname",
key2 = "\s\x\x",
flddesc = "25",
entryclass = "1",
mlfld = "N",
numflds = "2",
direction = "\®\3x\x",
type = "\®*\x",
delflag = "Y",
version = "\x\x\12",
line = 1)

\g

CLASS 2: Identifies data elements which are retrieved
based on a line number, ie. description or algorithm. This
class requires the relation’s line attribute be named line.

append to sadtdata (dataname "description”,

relname = "didesc”,
keyl = "diname”,
key2 = "\3\$\x",
flddesc = "60",
entryclass = "2",
mlfld = "Y",
numflds = "1",
direction = "\%\:%\z",
type = "\x\%\x",
delflag = "Y",
version = "\R\x\3x",
line = 6)

\g

CLASS 3: Identifies data elements which use type,
direction, or both of these attributes to identify the
desired entries within a relation. The attribute names must
be type and direction.

In the following example, please note:

1) Only the type field was used to identify the
proper aname to access. The direction field
contains "%%2x" (the use of the \ is required by
Ingres because ¥ is a wild-card character) because
it is not used to identify activityio elements.
Other data dictionary entries (ie. varpassed) use
only the direction field to differentiate between
the relation’s entries. Finally, entries such as

Wmmmmmmm"wwwva
]

‘o K%

R o o 1
&Iyl

b
P

[

O processio use both type and direction to identify
[OSTRAIE the relation’s entries. Always use the "¥%%" to
N mark unused fields.
2) The delflag was set to "Y" for the following
entry because it is the first of the activityio
entities used by the DM. The three remaining
activityio entries will use "N".
append to sadtact (dataname = "aname",
relname = "activityio”,
keyl = "diname”,
key?2 = "\x*\z2",
flddesc = "25",
entryclass = "3",
. mlfld = "N",
- numflds = "1",
g direction = "*x*\1x",
N type = "IN",
) delflag = "y",
® version = "\x\s\x",
= line = 3)
. \g
ésg CLASS 4: Identifies group fields, ie. alias, reference.
L
] append to sadtdata (dataname = "reference",
relname = "diref",
keyl = "diname",
key2 = "\x\%\z",
flddesc = "60",
entryclass = "4",
;- mlfld = "N",
. numflds = "2",
o direction = "\x\3\%x",
X type = "\x\®\x",
‘ delflag = "Y",
'3 version = "\s\x\x",
h - line = 17)

']
o

\g

s s
[

»
-

170

-

PR

N Y 5
Sl o)

oo

P M

o’

AR Y-

»

a“
el

-

Vs . P

>

Pl

AT

SN S

-
>

P

ST @

"’4’

append to sadtdata (dataname

relname
keyl
key2
flddesc

entryclass

mlfld
numflds

direction

type
delflag
version
line

\g

‘g £

"reftype"”,
"diref",
"diname",
"\E\\%"
"25",

"4" ’

"N" R

'Il" ’
"\E\x\x",
"\E\\x",
"N“ ’
"***" ’
18)

CLASS 5: Identifies hierarchical relationa. These
relation’s delflag usage is critical to prevent deleting
unowned relation entries. The higher order element (keyl)

has the delflag = "Y".

The lower level entry is "owned"” by

a higher entity and does not necessarily belong to the
entity being used. If both elements were deleted, the
possibility exists to modify entities outside the current

operation’s domain.

append to sadtdata (dataname
relname
keyl
key2
flddesc

entryclass

mlfld
numflds

direction

type
delflag
version
line

\g

171

[LS O T S O T Y S O OO I 1 I 1 I 1}

"hidiname",
"dihierarchy”,
"lodiname",

"\s\x\z",
"25" R
|'N" R
"1" ’
"\E\x\x",
"*\‘\"' ’
"N" R
"\E\x\x",
8)

A%

LRSI ANNRC TR e | iy
X ‘. ."lc."‘.‘h." ...' "i“. .‘::.'l...ﬁl"'n"h. 13 -' [} "...:...0““) o.l‘u. o) at n'l o'l # on ;‘l " i‘t'l WAL 0N 'g“‘r'l..!“ "“:‘:‘6"‘6".*'0)

%

Y

r

by

.

™, Q?ﬂ append to sadtdata (dataname = "lodiname",

\‘) " : 3 1]

Y N relname = "dihierarchy",
\ keyl = "hidiname”,

N key2 = "\EX\x\x",
flddesc = "25",

3 entryclass = "5",

o mlfld = "N",

N numflds = "1i",

v direction = "\$\:x\%x",

! type = "\f\zx\z",

R delflag = "Y",

%, version = "\E\x\z",

A line = 9)

)

- \g

[4

A

W !

3§: CLASS 6: Identifies the history relation. Unique aspect
o of these relations is their use of a version field. These
‘N are currently the only relations which have multiple

fﬁ versions. All versions are maintained in the database, but
‘.' only the latest version is retrieved for tool use.

E: The DM recognizes relations which have multiple

,}: versions through the table’s version entry. Only those

“a version entries without "t2%" are recognized for update and
T retrieval purposes.

append to sadtdata (dataname "version",

. relname = "dihistory",

{A keyl = "diname",

e key2 = "\E\zx\x",

"y flddesc = "10",

D entryclass = "6",

o mlfld = "N",

o numflds = "4",

&N direction = "\f*x\x",

s type = "\®\x\x",

' delflag = "Y",
version = "version”,

. line = 19)

\g

-

T AN
:.a."-“’."-"-, ’?\J\J‘ PRSI, | .) :}r{(‘ft.’:_‘,u.

-

CLASS 7: Same data structure as CLASS 3 data BUT these
entries are not updated during a session. These fields are
included to provide additional data dictionary information.
An example is the DESTINATION entries used in the Data
Dictionary Data Item entry. The DM uses CLASS 3 retrieval
procedures for generating the SDF entries, but uses CLASS 7
procedures when reading the updated SDF.

172

-

L4 - ” A . <1 M7 .
. { . " L% % AW ! .
y u‘:”‘ iy 4“‘0“ ".q 9!.“‘ "" ’r Ak

P ey @

-
-
»
-
Y

CLASS 8:

Same function as CLASS 1 entries but the data

elements making up this class occur throughout a dictionary
entry. The entries are the OBJECT entities: data item,

parameter,

and variable.

The definition table’s first entry

is still the identity relation’s name field, but the

remaining elements are used later in the SDI.

(Currently

used by the Data Dictionary Editor in the parameter entry.)

NUMFLD USR:

In CLASS 8 relations,

attributes do not occur

contiguously in the data definition table. If only a single

attribute is being accessed numfld = 1.
attributes are being accessed,

n,n-1,...,1 for the numfld entries.

append to ddparam (dataname

\g

relname
keyl

key2
flddesc
entryclass
mlflad
numflds
direction
type
delflag
version
line

If contiguous

use the numbering scheme

"pananme”,
"parameter”,
"paname”,
"\s\5\x",
n25n’

"8" ’

"N“ ’

"1" ’
"\x\%\2",
"\E\x\x",
llY”’
"\E\s\1",
1)

{Description is the second entry in the table.}

append to ddparam (dataname

\&

FUTURE CLASSES:

existing classes.

relname
keyl

key2
flddesc
entryclass
mlfld
numflds
direction
type
delflag
version
line

"datatype”,
"parameter"”,
"paname”,
"\E\x\x",
"25" ’

"8" ’

"N" ’

"4" ’
"\x\x\2",
"\E\5\2%",
"N" ,
"\‘\‘\‘l' ’
3)

New DM entry classes will be for those
elements which are used in a manner different from those
identified or whose relations use a different access method.
The best guide for adding a new entry class will be the
The Class 8 entries will probably provide

173

L i Dot s ao mg el e 4 v—mmml'mt

the best starting point for identifying the needed table
field entries. Warning: Be very careful in setting the
delflag values. Improper setting of the flag can cause
inconsistencies both in the entity and the entire project.

To add a new class, the DM will have to be modified.
The DM is structured so only the class_X_retrieval and
class_X write modules will have to be added. This is a
programming effort which requires knowledge of both C and
EQUEL. As above, the code used for the other classes
provides an excellent guide for developing the new code.

Other Control Relations

The remaining control relations support the DM either
in performing database accesses or providing session
control. This section provides the Ingres commands to
create the relations and a sample relation entry.

Tool Description Table

The Tool Description Table identifies the Tool Data
Definition Table that a tool uses in writing or reading the
tool’s SDF. Note: There may be similarities between the
data definition table requirements for different tools using
the same data dictionary data and the same table could
satisfy both tools’ needs. This is highly discouraged
because a change in one tool's data needs could adversely
impact the other tools using the same table.

Create: Create the tool description table. The only field
which does not require a value to be assigned is the
description field. This field is provided to allow the
database administrator to further identify a description
table and its user.

create tooldesc_tab (code = cl0,
phase = cb,
type = ¢3,
def_table = cl2,
description = c60)
\g
modify tooldesc_tab to isam on code,
phase,
type
\g

range of r is tooldesc_tab
define permit retrieve on r to all
\g

174

A AR TN S S¥ ST Wt i e
i L O

TTWIWLTWIF L. W/ TR WL BLE ., FeWNe Wy Wy T e 1T "7 TR FTTRTEOETROEAE T T

i o Sample Entries: The following samples show how the data
A “Ei definition tables containing the two data types used by the
SADT Editor are added to the tool description table.
'*b append to tooldesc_tab (code = "SADT",
s phase = "REQ",
N type = "ACT",
Wil def_table = "sadtact"”,
v description = "Johnson’s SADT tool")
o \g
.‘.-
. append to tooldesc_tab (code = "SADT",
o phase = "REQ",
B type = "OBJ",
et def_table = "sadtdata",
! description = "Johnson’s SADT tool")
_ \g
-
:_-\
\
’: Session Identification Table
b
o The Session Identification Table contains the infor-
O mation the DM used to create the SDF containing the indic-
5 ated session. The table tracks all active sessions. The
N table’s contents are manipulated only by the DM.
O
(6-". Create: Create the session identification table.
N: create sess_id_tab (session_id = cl12,
o project = cl2,
o parent_val = c25,
. -
St levels = ¢c2,
:) phase = c¢6,
n type = c4,
b, owner = ¢20,
" tool_code = cl10)
it \g
;h” modify sess_id_tab to isam on sessicn_id
'Y \g
o range of r is sess_id_tab
¥y define permit all on r to all
;é \g
-
ol
o Entity Identification Table !
) ,? 1
hﬂ‘ The Entity Identification Table identifies the relation .
- name and key fields necessary to check for an entity’s exis- |
4 tence and write status. Every data dictionary entry type '
17 has a corresponding entry in the identification table. The
[sample shows entries for the requirements phase. Similar
i entries are also required for the design and implementation
,$: ~ phases.
A
W'
~H
A 175 .
.
o
AT
. 2w - ; e, Rt N B o A X T I "
.‘..l. ' O.D-:’i 1)). ¥ 2l J o Qc. .‘V ‘.;‘!t:'l..o‘.. -:". (g X A X !‘ U/ A .l,n',‘l'.‘.q .0' ..Q‘.O...‘“

. CREATE: Create the entity identification table.

cb,
c3,
cl2,
cl2)

phase,
type

all

llREQ" ,
"ACT",
"activity",
"aname")

"REQ” ,
"OBJ" ,
"dataitem",
"diname")

AT
’ * create ent_id_table (phase =
type =

Ko relname =
‘:j keyfld =
P> \g
fq modify ent_id_table to isam on
\
0y \g
) range of r is ent_id_table

S define permit retrieve on r to
..]
Y \g
9..'.
[
(SAMPLE ENTRIES:
|$ append to ent_id_table (phase
hS type
x relname
Vol kEYfl d
@ \g

;. append to ent_id_table (phase
o type
- relname
ﬂi keyfld
Oy o \g
o G

J‘..

jf Entity Owner Table

2
£

O

:.‘::)%Iﬁu‘

L 3o

WA Ay
‘l‘l‘l"‘l‘ﬂ

o

,‘. W._'n

- L TR iy Wl AT T e T T I T TR P S i T i R ey e V. . 0 Ve S O
e e B e P b b g T L e T P A R A
7 2 N W, W% N0 g Ay S a N AV, W] -, WAlA SR AX AN EE Y Rk

The Entity Owner Table jdentifies the relation name and
key fields necessary to identify an entity’s owner. Like
the Entity Identification Table, each data dictionary entry
type has a corresponding table entry.

CREATE:

create entowner_tab (phase
type
relname
keyfld
owner_attr

c6,
c3,
cl2,
cl2,
cl2)

\g

modify entowner_tab to isam on phase,
type

\g

range of r is entowner_tab

define permit retrieve on r to all

\g

176

L)

T Ty Y T G S ity
Wtk l‘ol‘a.t, v) |~ 4 ..l,h. o

= AN

L AR Dy

SAMPLE ENTRIES:

append to entowner_tab (rhase = "REQ",
type = "ACT",
relname = "ahistory",
keyfld = "aname",
owner_attr = "author")
\g
append to entowner_tab (phase = "REQ",
type = "OBJ",
relname = "dihistory",
keyfld = "diname"”,
owner_attr = "author")
\g

Back~-Up Directory Name

The Back-Up Directory Name relation contains a single
entry naming the directory name to be used by all users of
the database for storing their back-up session files. These
files are created by the DM during Update Retrieval transac-

tions and used by the data manager during Update Write error
recovery.

INOTE: The table contains a single entry which establishes
the full path name (from the rcot) for storing back-up
session files. This entry has a very specific format which
must be followed. The format of the entry is:

Format: " /dir/.../.../dir/bkup.dir/"
Example: " /course/course/ee6380/fa87/"

Notice the first position before the "/" is a space.
This is required by the DM. If the "/" ir accidentally used
in the first position, the DM will encounter errors in
trying to create and delete the back-up session files. Also
the string ends with a "/" without a trailing space. This
format must be met exactly or none of the backup routines

will work, preventing error recovery during session update
transactions.

CREATE:

create bkup_dirname (dir_name = c100)
\g

range of r is bkup dirname

define permit retrieve on r to all

\g

D SAMPLE ENTRY:

W& e N

{“ > append to bkup_dirname

. (dir_name = " /course/course/ee690/fa87/bkup.dir/")
o \g

)

12N

O, -

:;' Multi-Level Transaction Table

The Multi-Level Transaction Table contains the rela-

? tions and keys necessary to perform hierarchical database
“y retrievals and deletes based on a parent name and the
3? indicated number of levels. This table contains the entries

for all tools using the database. The entries are tool,
{ phase, and type dependent. Each tool which supports multi-
level transactions has an entry(s). The entries identify

:: whether to retrieve only ACT or OBJ entities or BOTH entity
,ﬂ: types. Notice that if a tool can manipulate both a single
o entity type and both entity types, the relations used for
.. the parent identification may differ.
- CREATE:
L: create ml_trans_tab (toolname = cl0,
:ﬁ ' phase = c6,
. < type = c4,
('_ Ne levels = c2,
e par_name = cl2,
o par_rel = cl2,
v par_key = cl2,
.- sec_name = ¢cl2,
is sec_rel = cl2,
sec_key = cl2,
o, sec_alt_name = cl2,
e sec_alt_rel = cl2,
,fb sec_alt _key = cl12)
.]
® \g
- modify ml_trans_tab to isam on toolname,
- phase
- \g
X range of r is ml_trans_tab
", define permit retrieve on r to all
) \g
e
%
2
9. v
F N
\": ~‘:':$
G
Y 178
.l
L
L -
. ‘b“

"

O Y
R

v, A N O AN R W AN CIE LR e AT AN T
t. W9 v 1) ,’,C’.’i‘.’.’é"n".’ o_l’.?".!"a_ﬁ o 4% l‘:j‘w‘l"'h‘.'l'a’t’o t’.‘l‘t‘t‘.*’!‘i‘!‘l.« l‘r 0.4 i L2

L
A

AR

N S IR o
AEREHEREY

LIPS L P, I
!.6'. ALAS RN h‘..b'..n'n’ KL O

<L SAMPLE ENTRIES:

r ' append to ml_trans_tab (toolname
v phase

o type

[levels
Loy par_name
a3 par_rel
= par_key
& sec_name
- gsec_rel
= sec_key
b sec_alt_name

sec_alt_rel
sec_alt_key

¢
_ \g
i ‘

; append to ml_trans_tab (toolname = "DD",
" phase = "DES",
I type = "OBJ",
® levels = "1",
S par_name = "pahierarchy”,
e par_rel = "hipaname”,
- par_key = "lopaname",
= sec_name = "\X*\x",
T, sec_rel = "\E\$\2",
(_ h. sec_key = "\5\x\2",
S sec_alt_name = "\¥\$\x",
‘:: sec_alt_rel = "\x\%x\3",
Li sec_alt_key = "\3\%\1%")
K-, \g
?q Standard Data File
‘s
’I
‘. The SDF requirements are identified in the Standard
E; Data File Format. The key aspects of the SDF are:
:: 1) The entities must be ordered in the file
? according to the data definition table order.
‘o tool may not alter this order.
.
Y 2) The entity order is action entities then
®. object entities.
rr
~
:}i 3) Entities in a D (delete) status do not have a
o corresponding entry in the data elements.
W 4) The first DATANAME in any entity must cor-
4 respond to that entity’s identifying attribute,
o ??j ie. aname, paname.
e
W
o3
hﬁ 179
°
f

T AL AT NN N N R TN v N TRt A N
R AT RN sty ol A .l_u.l‘O 2V l,i":ﬁ.)' 8, ,"‘!..o...i .'1‘!.0 y

o

L L L T S T T I L VI T]}

"DD“,

"DES",
"BOTH",

"1".
"prcall”,
"prcalling”,
"prcalled”,
"processio”,
prname”,
paname”,
papassed”,
prcalling”,
iopaname")

14 of0 olh A%H ARG 04 N oSl ot o B a'A S g i g Ak Ealk Aal 71-1

e
. A4,

T ¥

(AR

&

)

o X ‘-.'J"_f"l._!‘ .f..

Rt

. @K%

A A e W AP
AN
B LAt

1y
.'{l,l'
A 1

7
7 »

5) Every DATANAME in the tool’s data definition
table must be included in the SDF. The DM expects
these elements to be present and generates an
error if any are missing. The DM does not write
the "blank" contents to the database. On retriev-
als, the DM will automatically generate a "blank"”
contents field for the DATANAME.

Transaction Request File Format

The Transaction Request File (TRF) format is provided
for tool designer’s whose tool can generate a batch transac-
tion. This discussion shows the field formats but does not
discuss their role. For this information, refer to the
User’'s Manual for the SEL Data Manager.

FORMAT

The following format shows the order of entries in a
transaction request file. The contents of these fields are
transaction dependent. Transactions fall into four general
categories: retrievals, writes, deletes, and session aborts.
Sample entries for these four transaction categories are
also presented.

FILENAME FORMAT REQUIREMENTS: Two types of files are used
in interacting with the DM. The files are the transaction

request file and the SDF. The naming convention used is the
following:

SDF -- filename.dbs (Must have .dbs extension)

TRF -- filename.ins (Must have .ins extension)

GENERAL FORMAT: A transaction file contains the entries
shown below, but as stated, not all the fields are used for
every transaction. For the unused fields, the field
contains "xx%", The use of this filler value can be seen ::
the transaction samples.

"R0-A189 628 CONMON DATABASE INTERFACE_FOR HETEROGENEOUS SOFTMARE 3/3
ENGINEERIMG TOOLSCY) RIR FORCE INST OF TECH
GHT-PATTERSON AFB OH_SCHOOL OF ENGINEEPWG
UNCLASSIFIED T D CONNALLY DEC 87 RFIT/GCS/ENG/B?D F/G 12/3

NL

- =

wp a2 M e

: |0 & jzs
i =L
————— '1'_: he M2
L f e

= ke

22 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

o, © ° o o o ° o o ® ® e v . - - -
o P a* R ‘. "r’\ ‘-‘
S

"ot
. 4 N
é v 4 X p Un T o7 L a il
! \J RIOAN] ¢ X S,
n. G.'O. o, ,h.,h.nhhc, 1‘,0...,0. . Ll b W

: GENERAL FORMAT SAMPLE:
i QW

v: o
v @@E@BEGIN@e@
K TOOL IDENTIFICATION
& DATABASE NAME
:: OWNER NAME
] PHASE
o TRANSACTION INDICATOR
v SESSION IDENTIFIER
3 SESSION FILE NAME
¥, PROJECT NAME
W ENTITY TYPE
" PARENT NAME
b LEVELS
" LIST OF ENTITIES:
.s Name Type
'.Q‘ (o] o]
« o o
:: @@eENDeee
4
$ RETRIEVAL FORMAT: The retrieval transactions are of two
Q types: retrieve only (R) and retrieve for update (UR). Two
Q examples are provided, the first uses a multi-level retrie-
K L]
)

val and the second identifies the specific entities to be

ﬁ% retrieved.

b RETRIEVAL SAMPLE 1: Multi-Level Retrieval
&
" @@eBEGINeee
" SADT
~ sadtdb
ot author_name
; REQ
UR
o s28

session_file_name.dbs
project_nm

" BOTH
- parent_name_for_ret
1
n
o @@eEND@ee
i
q
)l
o
‘¢
»
1
<
S
=~ o

181

LN @ L

(A, Q0% : D060 gco-«.
ot I et et he e "'e.‘ T T LA S AR "'n‘.'o s, et ! "' An .‘a Sl '0'«" AR " KIADAODOOO N N

ty
ity
1
‘{ o RETRIEVAL SAMPLE 2: Specific Entities
v
g @@@BEGIN@@@
i SADT
4! sadtdb
.‘l
ay author_name
B! REQ
3 R
- 13 3
- session_file_name.dbs
& project_nm
"y BOTH
" 33
I 0
o ACT_Entity_Name ACT
el OBJ_Entity_Name OBJ
;:‘ @@eENDee@
o
KA
R WRITE FORMAT: The write transactions are of two types: new
] writes (W) and write with update (UW). Only one example is
N provided because the formats of the two transactions are the
?. same except for the transaction indicator code.
’% WRITE SAMPLE: Write with Update
. 6% @@e@BEGINe@e
SADT
b ¢ sadtdb
5 author_name
“ REQ
“QS Uw
32
‘? session_file name.dbs
&f project_nm
" BOTH
& X3
K)
e 0
. @@E@END@eee
b
B
@
Kry
3
3
&
e
&
o 182
o
[
o
“ ; T ' 0 OOONORE DDA AANNONG
KR R R IO o M h ol ARSIV I Os AR XIS KO ARG Ry

- - - ‘$—.0’7&§ ,."._..._’..
& }c‘\’;’{, .. L’\{\’L’\f‘. ® e S 2 " .

" I

-
-

-
>

S L

X<~

l
VNJ
‘.

LRSS

- .) :) '
N " > IR) T AN Y U0 OUOUD) OO
N N I T L AT ;", A GO O O U UA R AT L) ‘."l",‘\"‘lw'o'.')”l'!'l'!'t UM c'! UMMM M N N N M N ‘»""c"'o' Tyt

DELETE FORMAT: A delete transaction (D) allows the tool to
identify the entity(s) to be deleted without having to build
a SDF. The delete transaction supports deleting either
explicitly named entities or via a multi-level transaction.

DELETE SAMPLE:

@@@BEGING@ee
DD

dddb
author_name
DES

D

b 3 §

232X
project_nm
OBJ

22X

0
Entity_to_be_deleted OBJ
@@E@END@@@

ABORT FORMAT: An abort transaction (A) allows the tool to
abort a session without checking the 8SDF back-in. This is
provided in case the SDF is lost or corrupted. The session
identification code is required for this transaction. It is
available in the results (TRFname.res) file which is genera-
ted during batch transactions.

ABORT SAMPLE:

@@E@BEGING@E@@
DD

dddb
author_name
DES

A
a08048712325
22X

£z

b 3 2

%3

0

@@E@END@@@

183

"t etk . -‘.- - ‘..‘.

5 K
-l
.

- .‘

A

&\-".;»

Appendix F: System Configuration Guide

This guide provides the configuration of the Data
Manager (DM), Interactive Transaction Menu, and Data
Dictionary-Data Manager File Translator programs.

Data Manager

The Data Manager code modules use the following include

files:

define.h -- constants definitions
datadef.h -- global data structures
ingdata.h -- global Ingres data structures

The DM consists of the following modules:

build_parent_list.o
class_1_ret.o
class_1_write.o
class_2_ret.o
class_2_write.o
class_3_ret.o
class_3_write.o
class_4_ret.o
class_4_write.o
class_5_ret.o
class_5_write.o
class_6_ret.o
class_6_write.o

class_7_write.o
clagss_8_ ret.o
class_8_write.o
dm_main.o
error_routines.o
proglib.o
retrieve_driver_mod.o
rmain.o
session_ret_hdr_mod.o
session_wrt_hdr_mod.o
trans_build_edit.o
wmain.o
write_driver_mod.o

The DM code can be broken down according to the

following functions:
Main
dm_main.o

Transaction Handling

trans_build_edit.o

y : AR
LM J » n“v,‘lv‘.'l R u o qu },q v::’yrl‘.?'l.eg.““: _; 'ﬁ‘.;“"f +

build_parent_list.o

184

I 309 DAZOMUATUARA MDA K PRI IO O MO
RRSRRAEAN v)‘\a"“.lq‘i‘ﬁ‘%:s‘*fx‘~‘_'-‘ LY "‘ﬂ':'o‘..'h'ﬂ'a‘.‘-‘;'A'."“

T Retrievals

3 rmain.o session_ret_hdr_mod.o
o retrieve_driver_mod.o class_1_ret.o
ﬁk class_2_ret.o class_3_ret.o
K class_4_ret.o class_5_ret.o
ﬂq class_6_ret.o class_8_ret.o
[)
o
QQ Updates
oy
lﬁ: wmain.o session_wrt_hdr_mod.o
f% write_driver_mod.o class_1_write.o
o class_2 _write.o class_3_write.o
’ class_4_write.o class_5_write.o
» class_6_write.o class_7_write.o
‘$ class_8_write.o
Q.
D)
ﬁq Error Recovery
.:0"
L error_routines.o ¢
0, "
.@4 Library Routines
‘g
:: proglib.o
W @ﬂh
; g Data Manager Gemeration
L+
Q: The DM is generated using the Unix make command.
.} The DM_Makefile contains the make instructions. The script
“f make.dm is used. The make.dm script and a sample DM_Make-
») file entry are presented. The complete DM_Makefile is
7 provided in Attachment 1.
e
m make.dm
) echo 'make -f DM_Makefile’
°® make -f DM_Makefile
L\ :w
L}
.ﬂ Sample DM Makefile Entry
i dm_main.o : dm_main.body define.h datadef.h ingdata.h
. - rm dm_main.q
N - rm dm_main.c
o cat ingdata.h dm_main.body >> dm_main.q
oy equel dm_main.q
j& cc -c dm_main.c
¢ .
" -~
o:" m
'
gﬂ 185

> o X O 1 T gV W
! U AR NN O OO

LU) . R - - . - LA - -
s)) s RO Y 1 O () % 3
e etious '!‘u"{'l‘.' l.,‘&.'“i.,.l' '.".0". Whehryy l!'?i UG o)i'v)"t!‘“v.l': R OO, A e o A D U AN

o - - =
Pl

™ %&8 Interactive Transaction Menu

The transaction menu program provides the interactive
. menu which generates the transaction request file.

W Source: trans_menu.body

Compile and Link Script: make.menu

rm trans_menu.c

[}

1 cp trans_menu.body trans_menu.c

v echo ’cc -0 dm_menu trans_menu.c’
) cc -o dm_menu trans_menu.c

Data Dictionary-Data Manager File Translator

¢ The DD-DM File Tramslator program translates a Standard
p Data File into a Data Dictionary Editor File format and
¢ vice-versa.
e
L Include Files:
9 -
dmdefine.h define.h (same as DM)
% = Source:
; eﬁe DM _TO DD CODE DD TO DM CODE
4
d dmtodd.c ddtodm.c
; dmtoddlib.c ddtodmlib.c
. build_dmtodd_req.c build_ddtodm_req.c
* build_dmtodd_design.c build_ddtodm_design.c
o DM to DD Makefile
§
o '
. # Makefile for dmtodd
$

dmtodd : dmtodd.o build_dmtodd_req.o build_dmtodd_design.o \
dmtoddlib.o

1d -o dmtodd /1ib/crt0.o0 dmtodd.o build_dmtodd req.o \
$ build_datodd _design.o dmtoddlib.o -lc

' datodd.o : dmtodd.c dmdefine.h define.h
P cc —c dmtodd.c

‘ build_dmtodd_design.o : build dmtodd_design.c dmdefine.h define.h
cc —c build_dmtodd_design.c

s dmtoddlib.o : datoddlib.c dmdefine.h define.h
") cc -c datoddlib.c

L1 186

|
¥ |
[]

) f) RONOY ' ™ BUIOUOLIO UMK LN T AL AL W)
RO ,u“.‘t"".“ N "';"4"';"‘4“‘,*6‘) a‘.\‘a"‘t".'-':'o‘.'0'-,W’.'".:o',‘t'.‘t'.‘i'.» A N N R o

- . g -

PR XX

-

II
.

BAL
)R]

I\
L)

s U by SOAODOARENY
et e

ey TRt Twwww T

DD to DM Makefile

#
Makefile for ddtodm
#

ddtodm : ddtodm.o build_ddtodm_req.o build_ddtodm design.o \
ddtodmlib.o
1d -o ddtodm /1lib/crt0.o0 ddtodm.o build_ddtode req.o \
build_ddtodm_design.o ddtodmlib.o -~lc

ddtodm.o : ddtodm.c dedefine.h define.h
cc —c ddtoda.c

build_ddtodm design.o : build ddtodm design.c dmdefine.h define.h
cc -¢ build_ddtodm design.c

ddtodmlib.o : ddtodmlib.c dmdefine.h define.h
cc —c ddtodalib.c

187

AR AN 08 OO0 OGN tn.nt.‘
* “'!.“n{"e'i'.“'.?t‘ i‘ 't' ‘o"!' ‘4"."0’ t""l" N ““" et """‘.Q‘I‘ NN

Ay ‘c‘ o' W,

(4 Li' v'
LORU RN

:: Attachment 1

R Data Manager Makefile

i The following makefile (DM_Makefile) is used to

: generate the DM executable code. It is called with the

P make.dm script.

g

. '

¥ # Makefile for dm.exe

E‘ #

f'

::, dm.exe : dm_main.o trans build_edit.o build parent list.o \
‘ rmain.o session_ret_hdr mod.o retrieve_driver mod.o class 1 _ret.o \
e class 2_ret.o class 3_ret.o class 4 ret.o class 5 ret.o class 6 -
" ret.o\

.": class 8 ret.o \

::, waain.o session_wrt_hdr mod.o write_driver mod.o class 1 write.o \
" class_2 write.o class_3_write.o class_4 _write.o class_§5_write.o \

r class_6_write.o class_7 write.o class_8 write.o \

error_routines.o proglib.o

. 1d -o da.exe /lib/crt0.o dm main.o trans build_edit.o build_pare-
; nt_list.o \

™ rmain.o session_ret_hdr mod.o retrieve driver mod.o class_?_ret.o \
‘s NI waain.o session_wrt_hdr _mod.o write_driver mod.o class ?_write.o \
‘ ﬁ; error_routines.o proglib.o -1q -lc

)

g dm_main.o : dm_main.body define.h datadef.h ingdata.h

:' - ra da_main.q

o - rm da_main.c

“ cat ingdata.h dm_main.body >> dm_main.q

equel dm main.q

" cc -c dm_main.c

W

4 error_routines.o : error_routines.body define.h datadef.h ingdata.h
I - ™ error_routines.q

. - ra error_routines.c

\ cat ingdata.h error_routines.body >> error_routines.q

W equel error_routines.q

M) cc -c error_routines.c

).

" build_perent_list.o : build parent_list.body define.h datadef.h in-
P gdata.h

. - rm build_parent list.q

% - m build_parent list.c

cat ingdata.h build parent list.body >> build_parent_list.q

WY equel build_parent_list.q

x cc —c build_parent_list.c

Fe

F)

&

)

:'.: 188

9,

“AA ,

Pt sar . (CAMONLHAOINON
L) 'n“'u ". (A ..t ‘:;,:!S&}¢ W X N " Y) : ’ ?.? . . C!..l'..!".l ""..‘Q"’L..'»."v“’o..'#..'

y
' o proglib.o : proglib.body define.h datadef.h ingdata.h
R 33 - m proglib.q
o - rm proglib.c
cat ingdata.h proglib.body >> proglib.q

0 equel proglib.q
::.:: cc ~c proglib.c
'Q‘
,"l: class 1 ret.o : class 1_ret.body define.h datadef.h ingdata.h
u'; - m class_1_ret.q
s - rm class_1_ret.c
'3 cat ingdata.h class 1 _ret.body >> class 1 ret.q
oy equel class 1 ret.q
:.’ cc ~c class_1_ret.c
N
o class_2_ret.o : class 2_ret.body define.h datadef.h ingdata.h
;.'.6 - I'm class_z__ret.q
o - ra class 2_ret.c
: t ingdata.h class 2_ret.body >> class_2 ret.q

:}: equel class_2 ret.q
& cc —c class_2 ret.c

class_3 ret.o : class_3_ret.body define.h datadef.h ingdata.h
A - ™ class_3_ret.q

i - mc _3_ret.c
X t ingdata.h class 3_ret.body >> class 3 ret.q
W equel class 3 ret.q
. 6% cc -c class 3 ret.c

‘0N

: class 4 ret.o : class 4 ret.body define.h datadef.h ingdata.h
B~ - rm class_4_ret.q

fv... - ™ class_4_ret.c

A cat ingdata.h class 4_ret.body >> class 4 ret.q

?_ equel class_4 ret.q
cc ~c class 4 _ret.c

-

o class 5_ret.o : class_5_ret.body define.h datadef.h ingdata.h

e - ra class_5_ret.q
N - ™ class 5_ret.c

cat ingdata.h class 5_ret.body >> class 5 _ret.q
-,,i equel class 5 ret.q

-9 cc —c class 5_ret.c

e

:'.t. class 6_ret.o : class_6_ret.body define.h datadef.h ingdata.h
Py - rm class_6_ret.q

%P - ™ class_6_ret.c

(! cat ingdata.h class 6_ret.body >> class 6_ret.q
[~ equel class 6_ret.q

o cc ~c class_6_ret.c

('

‘::: ‘\.,Ea

f::t

®

N

e 0 n, DDA N NS O OO OO N GROOROOS
1, o’"l'?"‘;’x"'l"'t':.“:"'n"‘n‘l‘:f""‘."‘.m"‘z"’{“':"*:"~*.“-"'1"'.»""-f"!:'i*:‘?0..“?‘.‘."ﬂ.’"r?"«é""i‘.v"t:"';"h”h‘wf:‘?h Tyttt Ottty s’."J:‘~‘0“a’c .

>

O RN

Y

Dhtny

b

I‘-‘.,;';'t‘
LS N NN

L 4
e

WO

RAGAON

class_8 ret.o : class_8 ret.body define.h datadef.h ingdata.h
- a class 8 ret.q
~ = class 8 ret.c
cat ingdata.h class 8 ret.body >> class_8_ret.q
equel class 8 ret.q
cc -c class_8 ret.c

retrieve_driver mod.o : retrieve_driver mod.body define.h datadef.h
ingdata.h
- ma retrieve_driver_mod.q
- mm retrieve_driver mod.c
cat ingdata.h retrieve driver mod.body >> retrieve_driver mod.q
equel retrieve_driver_mod.q
cc ~c retrieve_driver mod.c

rmain.o : rmain.body define.h datadef.h ingdata.h
- ™ rmain.q
- rm rmmain.c
cat ingdata.h rmain.body >> rmain.q
equel rmain.q

cc -c rmain.c

session_ret_hdr _mod.o : session ret_bdr mod.body define.h datadef.h
ingdata.h
- ra session_ret_hdr mod.q
- A session_ret_hdr mod.c
cat ingdata.h session_ret_hdr mod.body >> session_ret_hdr_mod.q
equel session_ret_hdr mod.q
cc —c session_ret_hdr_mod.c

session_wrt_hdr_mod.o : session_wrt_hdr mod.body define.h datadef.h
ingdata.h
- ™ session_wrt_hdr mod.q
- rm session_wrt_hdr mod.c
cat ingdata.h session_wrt_hdr mod.body >)> session_wrt_hdr mod.q
equel session_wrt_hdr_mod.q
cc —c session_wrt_hdr mod.c

trans_build_edit.o : trans build_edit.body define.h datadef.h
ingdata.h
- ra trans build_edit.q
- rm trans_build_edit.c
cat ingdata.h trans build_edit.body >> trans build edit.q
equel trans build_edit.q
cc —c trans_build_edit.c

190

O

OO

o - way Ny
o A SO N0 OO0 7O Oy D OGO TOOC iy w06 (4 360 L SR AN AN SD DA SN
",":"\.",".?""’...'l ‘.ﬂ’h‘,ﬂ',‘:‘:'u‘:‘f‘!'a‘!ll S ,':‘:'l‘!id..;'l.{";g'!'t" SRR et HARLGATAN) K02 SUBIRA S SR UGN UM O

YN NFIYeY

W : class_1 write.o : class_l1_write.body define.h datadef.h ingdata.h
@ -~ rm class 1 _write.q

- ma class 1 write.c

cat ingdata.h class 1 write.body >> class 1 write.q

_3_write.o : class_3_write.body define.h datadef.h ingdata.h
- ™ class 3 write.q

-
|
|

nirie Yo s
E

write.o : class 4 write.body define.h datadef.h ingdata.h

.h class 4 write.body »> class 4 write.q
4 wri

1 class 5 write.o : class_5_write.body define.h datadef.h ingdata.h
5 - rm class 5 write.q
:: - rm clasg 5 write.c

cat ingdata.h class 5 _write.body >> class 5_write.q
¥ equel class 5 write.q
w4 cc —c class_5_write.c

y class 6_write.o : class_6_write.body define.h datadef.h ingdata.h
! - ™ class_6_write.q
- ™ class _6_write.c
h cat ingdata.h class 6 _write.body >> class 6_write.q
o equel clasg 6 write.q
cc ~c class_6_write.c

o
At

class 7 _write.o : class_7 write.body define.h datadef.h ingdata.h
- rm class 7 _write.q

X - rm class 7 write.c

¥ cat ingdata.h class 7 _write.body >> class_7_write.q

X equel class 7 _write.q

K cc —c class 7 write.c

, A
A

191

[oN % W ¥ Yat e
" i { ‘ OEOBDSISONON0 0N 1OCOOO00N00) %
IR .’;, ’. Torte, '.,c‘.:-f.f\','*.'s',‘\‘,.‘t!.“\’.,o!dﬂ.,‘ i‘.,vfci_\'::of.ﬁi_ :n!a‘,sﬂ.,c!.‘u’.fcf.,}!_g.}fq,-3.,03;,O'o,t',q.cfho!..!.'o.tfrélAq,e,, B0 ,l'n_j“o,\,v.‘,tﬂ,it‘,'. O OOU N

-,

; o class_8 write.o : class_8 write.body define.h datadef.h ingdata.h
R - mm class 8 write.q

v -~ rm class_8 write.c

o cat ingdata.h class 8 write.body >> class_8 write.q
K, equel class 8 write.q

: cc —c class_8 write.c

,

. wmin.o : wmain.body define.h datadef.h ingdata.h

, ~ rm wmain.q

A - rm wmain.c

< cat ingdata.h wmain.body >> wmain.q

o equel wmain.q

o cc —c¢ wmain.c

E write_driver mod.o : write_driver mod.body define.h datadef.h
R ingdata.h

) - rm write_driver mod.q

: - rm write_driver mod.c

!, cat ingdata.h write_driver_mod.body >> write_driver mod.q
4 equel write_driver_mod.q

X cc —¢ write_driver mod.c

)

L .

] &

0

[}

)

-\

5.

4

k)

2

“

(

M

K v’t‘

AR

L 192

]

‘ hl)’5 "l g'l . G A ':g“.g' .J'l!qq. ":Q *‘i.' M) 'I.'"AQ .‘ (X “i “hnt :."‘9 . ‘QQ;? "l! l "5.;. '..A‘ o '(.d "i. LS "‘07 '.".@ .2’ .. ’ # ‘ "‘\‘ by * t'

Appendix G: Summary Paper

Abstract

This paper describes the design and implementation of a
common database interface which integrates a set of heterog-
eneous software engineering tools. These tools run on a
N variety of workstations and are combined to form System 690
which provides a software design environment for use within
% the Air Force Institute of Technology (AFIT) Software
% Engineering Laboratory (SEL). The interface was implemented
‘ using a standard data file for all data transfer and a data
manager which provides the database support for the System
;ﬁ 690 tools. The unique aspects of the interface are its
: ‘3.;. ability to support tool data changes and the ability to

incorporate new tools into System 690.

Introduction

The goal of System 690 is to provide an integrated
system in which a designer could sit down at a workstation,
download the necessary data from a central database, work on

7 a portion of the design, and when finished, upload the

modified data back to the database. This data, when stored
in a comprehensive, centralized database, would provide a
system which could share data between tools and provide the
means to document a software project throughcut its entire

life cycle.

193

L . T

B

F_—mwmmmwwvvm T —\-7

The objective of this research was to integrate the

Y,

PR
‘_1 2y %y
r.T.

System 690 tools by designing and implementing a common
database interface between the tools and a central database.
The interface was implemented using a standard data file to
transfer data between the tools and a data manager which
performs all database transactions. The primary design

consideration was for the interface to support the incor-

poration of new tools into System 690.

Overall System Analysis
The basic objective of System 690 is to support the
standard software development methodology established in the

Software Development Documentation Guidelines and Standards
‘Sﬁ (5). These guidelines establish the software development

documentation standards for all AFIT software development
projects. The method used to support this standard is a
data dictionary. A dictionary entry is established for the
requirements, design, and implementation phases of the
software life cycle. Each of these phases consists of a set
of action entities and a set of object entities for a total
of six types of dictionary entries. Refer to Figure 1 for a
sample data dictionary entry.

Several thesis efforts have produced a set of automated
tools and a data dictionary database which support the

concepts set forth in the Software Development Documentation

. Guidelines and Standards (5). The data dictionary database

contains the schema for all six data dictionary entries.

194

Ty

";"',(

i ¥ .2 .
i e N

Pl ol o=

-
o

- -

Y

-
AA

s B

s

i MR R Pl ‘
EAEAAY | RANARARST A AALS

S0

".‘\‘~ o¥

A0

n):,

s

-‘-r'rt'vr(-r-rr-(.t - . 4-(,'_4 -.‘_- 102) . .‘. ..’
Ay [.
IRy N AN N e T A SR N A Y <

NAME: mess_parts

PROJECT: NETOS-ISO

TYPE: PARAMETER

DESCRIPTION: Decomposed message parameters.

DATA TYPE: Composite, probably C structure or PASCAL record.

MIN VALUE: None

MAX VALUE: None
RANGE OF VAIUES: None
VALUES: None
PART OF: None
COMPOSITION: SRC

Buffer
ALIAS: Message Parts
WHERE USED: Passed from Decompose Message to Validate Parts
OCMMENT: Part of earlier design
ALIAS: messy-parts
WHERE USED: Passed from Dump Data to Flush Buffer.
OOMMENT: Part of existing library.
REFERENCE: MSG_PARTS
REFERENCE TYPE: SADT
VERSION: 1.2
VERSION CHANGES: Component USE added to allow network messages
DATE: 11/05/85
AUTHOR: T. C. Hartrum
CALLING PROCESS: Process Message
PROCESS CALLED: Decompose_Messaage(parts list)
DIRECTION: up
I/0 PARAMETER NAME: parts_list
CALLING PROCESS: Process Message
PROCESS CALLED: Process Network 4 Messages
DIRECTION: down
1/0 PARAMETER NAME: parts

design phase.

Figure 1. Sample Object Entity Dictionary Entry
in Design Phase (5: 29)

195

LR

(3

‘."\!.\!,’x.-. .‘N"r‘ “r <Y
.‘.v "‘ [, ?‘ “|..|.

Refer to Figure 2 for the schema of the object entity in the

The data dictionary database was implemented

L

1‘; - !o‘.,u' ,".

*: .. using the Ingres relational DBMS and runs under the Unix
. n.“:'.'
A A
B operating system on a VAX 11/785.
o
)
e q
4 parameter papassed
X project cl2 project cl2
N paname c25 paname c25
o datatype c25 prcalling c25
R low cl5 prcalled c25
o hi cl§ direction c4
it span c60 iopaname c25
ot status cl
[4
?a padesc pavalueset
D>
& project cl2 project cl12
42 paname c25 paname c25
:ja line i2 value cl5
W\ description c60
L
WY paalias pahierarchy
e project cl2 project cl2
bf paname c25 hipaname c25
" ‘ aliasname c25 lopaname c25
o ‘fﬁ comment c60
. $ o whereused c25
:ﬁ pahistory paref
~ project cl2 project cl2
A9 25 aname c25
9! paname c P
L) version cl0 reference c60
; date c8 reftype c25
.ﬁ author c20
> comment c60
"
L
.5 Figure 2. Database Schema for an Object Entity
. Within the Design Phase (4: 37)
; The existing workstation tools are connected to a VAX
:i 11/785 via a Gandalf network, which creates an excellent
N opportunity to create an integrated environment where all
N
S . the tools share data using the Ingres DBMS. However, prior
Y vl
<A\ ALY
?\) to this research, only the design phase of the tools could
y
) 196
®

)
¥
W i R
a0 7o 3) sy Ty 0 3 TR T R R T Vo PR U 3 5 00 s T NVl
f‘t'o'-'ﬁ"'l*‘l pOA A L NS -_l‘q‘l s l':.,l'aPC " .. Wy Y n 5 2 ol 2 IR M e b 1

LV % SRS A EN ¥ \ .
RN ALY MU oA T

-
fu

- e
w el e

k>

oy

TR - P ——
e I

R
- - s'a >

- . .

Y

interface with Ingres. This configuration (see Fig. 3)
prevented the tools from sharing information and precluded
the use of tools such as automated consistency checkers,
which could provide design consistency throughout the
various phases of a system’s design (6: 652). The inability
of the tools to use a common database was the main problem
which prevented integrating the System 690 tools and was the

basis for performing this research.

System Design Analysis

Before beginning the design analysis, several defini-
tions are needed. A data entity refers to all the informa-
tion describing a data dictionary entry. The data
entity consists of multiple dacta elements. These data
elements are the values representing specific data fields in
a data dictionary entry. A session refers to a tool-data
manager interaction where data is retrieved from the
database, manipulated by the tocl, and stored back into the
database. A transaction is a request to the data manager to
perform a database retrieval or update.

The primary requirements of the data manager and
standard data file were for them to adapt to tool data
changes and support the addition of new tools with their
different file requirements. The data manager performs many
tasks, but its basic function is to retrieve data from and
write data to a common database using the standard data
file. These components will interact in every database

197

L .

SR I OO i N T ' Sttt A NRECTRRR P Th A T
et M v...h Ul /G N Sk a‘.»l"-‘»l“a.l. A OO AR S RTINS AR

by ¢

transaction (see Fig. 4). The following sample session is
A provided to show how the data manager and standard data file

) will interact to update the common database.

REQUIRE
W : DD

) DESIGN FOLEY VAX
, DD INTERFACE

11/780

b @"3‘ CODE

DD

DD
DATABASE

N

" EDITOR

TOOLS

[YCR Q&
-“‘I
NG (s

:.‘\.. 198

Figure 3. Current System 630 Configuration

A Ry . < “«uf - O St AR LSS .’\.- S Y, A
'.-.f', 1él; l",'a A l’,' (Al "‘!""g”,‘. .‘ﬂ.‘.‘"t'f‘.lf'. 0 .l.'g ;". 3 A‘:"‘:'"n'! o"‘d.‘.'.' n’."ﬂ".‘.“i, “!‘.'.,'.0 PR b M n K Ol MM M J',‘.t'ﬁ.!, M) O M A

Lo

"I.“;

G

B

T,
he

<

Ay
‘,|' o

T

LAt]
RO N

Sample Session: A user or tool will request a
data entity(s) from the database. On receipt of
the request, the data manager will retrieve the
data and provide this data back to the requestor
in a standard data file. When retrieving the
data, the data manager will provide session
control to maintain database integrity.

When the desired changes have been made to
the data, the tool which checked-cut the data,
requests to update the database. The data manager
will use the standard data file, containing any
changes made by the tool, and the session informa-
tion generated during the retrieval to coordinate
and perform the database updates. After the data
is successfully written back to the database, the
session is terminated.

The sample session shows how a typical session is
performed. It also indicates the dual role the standard
data file and session information provide. The impact of
this dual role will be seen throughout the remainder of this
paper.

Standard Data File. The standard data file is the
means used by the data manager to transfer data between
System 690 tools and the common database. It provides a
standard file structure for all tools to use in interfacing
with the data manager. The file is the interface and
therefore must contain not only the requested tool data, but
also provide control information to the tool and data
manager by describing the contents of the file.

The design of the standard file is examined with
respect to its two components: file description header and
data file entries. The file description header design is

based on the need for it to provide the information neces-

199

ety éﬁs sary to inform a tool and the data manager what the contents
U

b and structure of the file are. The data file entries’
format design is based on identifying the types and struc-

e tures of the data elements being transferred.

o REQUIRE
) DD

= DESIGN | _ (STANDARD DATA VAX

N DD DATA FILE MANAGER 11/780
r

ey CODE

e DD
) CENTRAL

o DATABASE

° SADT FUTURE
2 EDITOR TOOLS

A

Figure 4. Requirements System 690 Configuration

" 200

L

M- SO A AT AT AN TatAt ‘ Y T A AN 0 o ‘. ‘* " ~'(\($‘-\(\'{\.\<‘..~
l‘:'l.‘.'l.:.l’:'i"..l':‘t.f.-. ‘-"'l"‘a".‘«"‘l",'n"in"'.!".'.‘A".O.'.‘.‘ﬂ .c."... LR AL '.0“,l‘.‘l"..‘.il".!‘.n"‘-l A et ..“0 N ,' LAl AN Ml WG

ﬁ?ﬁf File Description Header. The contents of the file
description header are the following: session identifica-
tion, tool/file compatibility header, project, phase, type,
" data entity summary, and start/stop time entries. These
fields were combined to produce the file description header
(Fig. 5) used in the standard data file.
The file description header supports the standard data
' file’s dual role of describing the type of data contained in
§ the file to both the tools and the data manager. The
a seassion identification field is used to support the data
manager in performing its session control function. The
project, phase, and type identify the specific type and
o ‘ format of the data entities contained in the data portion of
'Q ‘85 the file. The entity list provides the names and types of
the entities in the file. This allows the data manager to
3 verify that the file’s data contents correspond to the
header entity list to insure that no entities have been

erroneously added to or deleted from the data file.

Data File Entries. The data portion of the
standard data file consists of one or more data entity

entries. Each entry is composed of all the data elements

XXX XA

necessary to satisfy a data dictionary entry. The data

elements are contained in a series of data records (Fig. 6)

B

and consist of the following fields: dataname, field length,

- multi-line indicator, number of fields, direction, type, and

\'\:a
Yy

contents.

201

(PSP P P R P I D TN gy YL IOt LRy | T Lt R By
X

NPT . ey
o e RIATS » . - S ot g) W, O O
LB S D A DAL A SRR R AW L R ADABEIAL A Ll o Woarhy rt LN UU U S AT AT D LR ST N U NN

NS These fields provide a full description of a data
P‘) element and its use in a data dictionary field. The ability
$: to describe a data element allows the element records in a
f§ file to be ordered to satisfy a tool’s specific data
1{ requirements.
bJ
:
$ SESSION ID
T_' TOOL ID
g PROJECT
‘.Ei PHASE
)
4 TYPE
1 START TIME
',‘. STOP TIME
| ef: LIST OF ENTITIES:
:: Name Type Status
r; . . .
- Na;e Tyﬁe Staéus
!
" Figure 5. File Description Header Format
1 Data File Structure. The standard data file
é structure (Fig. 7) is built using the file description
.: header and data entity entries. The file contains all ASCII
?. characters and consists of the file description header, data
?' entities, and section delimiters. The delimiters are unique
¥
?; 932 for each section and are designed to help the tools and data
§ ~ sanager maintain their position in the file. The delimiters
202
L)

1)

\ OO QL) e
....... e ¢M..,\‘:fo'.,t'.fcf.f".fo’.,‘t'.fu'.fu'.?" R CRTODAT N

- o« ” LAY e C A T AY LRV U
'."",ln "l:.'l.) '.'..":.' " l“ .‘.0 L n‘.'f“‘t'.,‘\'...l"."':‘l A o, N ('/ ‘ t.,‘. i"

LA

I

-

- o
p

-
e R
e §
v %

A
A
',1

RS also help tool developers read the file’s contents for

‘n"- \:i‘;\}’
v debugging purposes.
i

]
i
o
":9
uW‘ DATANAME
i
el FIELD LENGTH
‘e
o MULTI-LINE INDICATOR
}I':S
- NUMBER OF FIELDS
43
X DIRECTION
.“‘O
8
P TYPE
Q"u'.ﬁ
L CONTENTS
v"
2%
P,
$ -,:
o (n“ Figure 6. Data Element Record Format

]

o
j':“
04N The key feature of the data file is the ability to
WY
0
$~‘ place the data element records in a tool-specified order.
i)- The file description header contains the information

-.I
§~ describing this ordering to both the tool and the data
Z&; manager. The capability to support multiple data record
g orderings allows the standard data file to incorporate tool
L -
28 data changes and to add new tools to System 690.
i
wiad Data Manager. The data manager must provide a broad
®.-
{f range of functions. Its primary functions are to retrieve
iﬁ% data from and write data to the database using the standard
W

! data file. The data manager also provides an interface
R A
:& E:f which allows tools and users to specify the transactions to

»,
3%
W 203
(X
l' L}
o

"l’"i‘f-\lllfl .1---.- -’q__ -11_._.\ AVY

S N
"""" R] ‘\\} LAY ;,c“t'o‘.",u O ""' 20 R .H.n

\ ")),‘- " \), "‘K,. r. "!f

e

.s-. .;:u}'s be performed. Finally, it provides session control to
i) g

’ protect database integrity.

o

o

4

K

A

Y #@@BEGINee#

N #@4HEADER BEGINj@#

;: ¢(file description header, Fig. 5>
! $Q#HEADER END#@#

S $3#ACTION TYPE###

)

b @##START#4@

I'.

: <entity element record, Fig. 6>
o @##STOP##e@

‘-:

:: o

. o

Lt ‘; o

o $#2ACTION END###

R !

‘- #380BJECT TYPE###

: @##START##@

=

::: <entity element record, Fig. 6>
il Q@##STOP#1@

q

o c

[o

" ' o

:

W 2#30BJECT END###

Y

o $Q@@END@@}

l.

: A

| Y

l..

‘ Figure 7. Standard Data File Format
5 Lol N

n

i

W 204

- "t 4 Y N A WOGDAD oAV {
'.'0':" A "0. L ’y"‘ , R\ ,‘o':'-",u':‘o‘tn A '\ A ,\.‘,J’.'!v"!t"‘.’s‘

s s
’d
&N

Database Functions. The primary components used
by the data manager to perform database transactions are the
) tool data definition table and the tool description table.

These tables permit the generic classification of the
\ entities used by a tool. They support the data manager’s

q two primary functions which are to perform the database

0
x

retrievals necessary to generate the standard data file and

-, .
C) -

to use the standard data file to perform database updates.

Tool Data Definition Table. The key data manager

- X P oy

requirements are for it to support the retrieval of data

dictionary entries, formatting the retrieved data into the

-

standard file format, and updating the database. The data
R definition table (Fig. 8) provides a mechanism which is
\ flexible enough to incorporate current and future tool data
B requirements into a standard data file with little or no
A data manager programming being required. The table provides
all the information necessary to retrieve or update a data
element and it contains the information necessary to read
| and write the standard data file.

A data definition table is created for each data entity

type used by a tool. Each table has a unique relation name
. and is tool, phase, and type specific. The use of multiple
relations localize the impact of tool changes and supports
; the requirement to easily incorporate new tools into System

A 690. To add a new tool, the only requirement is for the

-
e
.\'.J

L

N appropriate tool data definition table(s) be created.

‘ 205

- L R 2T p T AT R A" --.l-'-- - - R T I I S s B
3OV e A A

¥ o .
O 00 ", / v he *,‘(\"(
‘*.i'*'o".n‘h".o'i.s’i.a"..:".t'!.o"ff'o".o OO)

WY Salel

OHIEIE Ay

RIS ONC
. \

bt
Y
HN,0 S8 V.4 F,90,

3 {aé The key fields in the table are the data element name,
'C: b‘
' element’s relation name, relation’s key names, and the entry
"ﬂ classification of the element’s relation. The data name,

>

v relation name, and key fields contain the information

:f necessary to identify any data field in the database. The
(‘;t

: entry class identifies the structure of the data element and
s its access method. The combination of the these fields

(™
M allows the data manager to access and modify any database

|

: data element.

'

o

4

5 DATANAME RELATION KEYFIELD_1 KEYFIELD_ 2

‘ A
(~ QD' FIELD_DESCRIPTION ENTRY_CLASS MULTI_LINE_INDICATOR

.

"

Q!

oy

E NUMBER_OF_FIELDS DIRECTION TYPE

K

K DELETE_FLAG VERSION | LINE

e
;; Figure 8. Tool Data Definition Table

o

The ability to use these fields to update and retrieve

:E any database element is the key feature of the data manager.
W

'y The data definition table entries may be in any order. This
" A ordering dictates the order the data elements are written
S

3 ~ and read from the standard data file. Because the fields

y

K 206

L)

" . - A A - At T T W Y “ oV - PRI T TR AT T ™ " A T (e T T)
' Q O™ e AN N » W AR ARSI N AR A Y
‘:t":‘,"o l':'t‘»'l‘:‘ﬁ‘: ':'l“ OO NIV A L DGO T M KO Y MDA OO NN (S AaSada Ui bl el gty

gt D D B s R A

B N N A A R

s F il

9"

may be placed in an arbitrary order, the data manager can

support any ordering of data and thus can support a tool's
specific file requirements allowing for the easy addition of
new tools to System 690.

The data definition table not only supports the easy
incorporation of new tools, but it does so in a generic
manner. The only requirement to support a new tocol is to
identify the entry classification of its data elements. If
the entry classes are the same as existing classes no
programming changes must be made to the data manager. If no
class exists for a specific data element, only changes to
support this new class is required. This greatly enhances
the data manager’s ease-of-use for tool designers and it
reduces its maintenance to a very minimal level.

Tool Description Table. The tool description

table (Fig. 9) describes a tool and its data needs to the
data manager. The description table is used by the data
manager for transaction request verification and database
retrievals and updates. There is a tool description table
entry for each phase and type of data entity used by a tool.
This is required to identify the specific data definition
table relation describing the requested data dictionary
entry. This table, in conjunction with the data definition
table, allows the data manager to identify the standard data
file requirements for any System 690 tool. The description

table identifies the data definition table to use in reading

207

- £ 4

R TN N T] R 3% e | T, Q)]() W e ™ e W W ’QF -‘. -‘«p .;-_h F"’-J»'V" » :v-‘
\‘ l'..‘n“.h .n."e‘.*'?.'fo. (NN h":.-"')‘:,h !:‘5.,.':.;"1 .‘o .‘l;] ' K Mo R ,‘Q‘?'Q UM PN M ."JA‘!‘\ L b!‘l AN .4‘!.6 b AR LN M M M U R

g
Ya¥lo,

s

i o
]

%
I A 4

bA,ty

e Y

L @ B

Al
I

W48
K
xS

R - -
“. l‘ "l'
LA AL L L

v
Al

-

@A O A

et

T

- o - - -
I??,.-LL ZRALrt " Y

DR
D

NN
W

SN
-
L

or writing the standard data file and the data definition

table contains the file’s structure.

TOOL_NAME PHASE TYPE DEFINITION_TABLE | DESCRIPTION

Figure 9. Tool Description Table

Tool/User Interface. The tool/user interface is

provided to allow a tool/user to specify to the data manager
the type of transaction to perform and provide the tool/user
the transaction’s results. The interface supports both
interactive and batch requests. This provides greater
flexibility for smart tools that can build batch requests
without the user having to interface directly with the data
manager (Fig. 10). The interactive interface (Fig. 11) is
available for use with tools that do not have the sophis-
tication to perform a batch transaction.

Tool Data Request. The tool data request (Fig.

12) contains the information needed by the data manager to
perform all of its database transactions. The majority of
the tool data request correspond to those used in the
session file description header. The fields unique to the
request file are the transaction indicator and the parent
and levels entries.

The transaction indicator informs the data manager the
action it is to take. The transactions supported by the

208

“
b .‘.F Lt N Ty “ ()
) v"."” u\ ul o:'?-‘u‘ ~‘o.“n."n"".‘ o.l W 'l. o h ...0.‘ [fh.' l forle et aptint Js. .h 'nl o o u.u‘a h‘.'u‘h -’n‘!‘ u.‘l‘ Y.

‘‘‘‘‘

{
.?'I .:'0.‘»“‘

b{ User

Tool
Interface

Transaction

o Tool

EAE A

[y

Request

File

Manager

Common

X

L

rElrA
[

>
a
¥
4

2
o

Figure 10.

Batch Data Manager Interface

f 5

v\

2]
-l.'

.

f. [

s

Tool

54

2EELA

-

(R R} ‘i.
'-'.'«'u'l.“. 1

MRS S

Standard
File

Manager

Common
Database

‘
L

7

AT
wr Figure 11.

PEP e
L% YN

- .o
Nk de @
-~

Interactive Data Manager Interface

) v 1 N
{&M.Mﬁmhﬁ,wn%u%WdNth%%ﬂdfﬂa

209

:c‘:.t

'.l"l.g SN lﬁ'(‘n'lw" ‘. l,g'\ﬂ l‘..‘. J atltgq Wf

#‘ ST data manager are data retrievals, updates, deletions, and
v session aborta. The data delete function is provided to
allow a user to delete specified entities without having to
- retrieve them for update, changing their status to delete,
& and resubmitting them for write with update. The session

\ abort transaction was added to provide an easy means for

o users or the database administrator to abort an old or cor-
! rupted session. This allows data entities which had been

identified as checked-out for use to be made available for

e other users.
.i The parent and levels fields are provided to allow a
Eﬁ user an easy means of retrieving a large set of related data

t entities by providing a single parent name and the entities

pointed to by that parent for the specified number of

S levels. An example of this is an SADT diagram which

i@ contains multiple action and object entities all of which
h— are pointed to by its Title. This is an important feature
‘: because new software design tools are incorporating the

‘F: ability to simultaneously work with multiple levels of a

5’ system’s design. This feature precludes having the user or
:2 tool track the entities needed for a session and eliminates
:: the possibility of omitting entities needed within a

e .

3N session.

L Results Reporting. All transaction results are
reported back to the toocl/user. Batch transaction results

are reported through the use of a results file. The results

210

4

W00 YOO AN TS 0O O TR LY WY
hadshhaiate et Ot ANY t?!.'?efi';.'.;. fah Ot tatothoh) ,‘Q‘!‘a.-'(‘:‘«..'l.v'fhs".i" RRKAAOAIALADG I A ARL AR

ﬂ{
S
o
L4
. TOOL IDENTIFICATION
2,
3 DATABASE NAME
4y
) PHASE
‘ TYPE
)
-_\' PROJECT NAME
]
| FILE NAME
ti OWNER NAME
b TRANSACTION INDICATOR
A9
N SESSION IDENTIFIER
9
“, PARENT
; LEVELS
;f é?h LIST OF ENTITIES:
L 4
5 Name Type
5 o o
a o o
'
v Figure 12. Tool Data Request Format
® file contains the list of successfully performed transac-
s
:: tions. In the case of an error, the cause and error
9
:, recovery results are placed in the results file. For
A
)
¢ interactive transactions, the same results are reported to
W
f: the user but the results are displayed directly to the user
-
: via the CRT screen.
N
e Session Control. Session control provides the data
"
Y "-}‘
': ’ manager librarian function. During retrievals, the data
\.
211
By ¥
Q®

N B} 3 e "
. ; Can) o S - UOIOOGOGRENC TN OO O OO XY
Q0GR NI SN :’l,.“.«'é‘u".v B 'e"a'iq‘ﬁ‘u AT N (N R LI SN .‘:’c".h‘;ro'ﬁ: G 0 "'w.v“\ﬁi‘.-.‘ TN RO Ol

RPN L

_.' "'

-

. f
-

Al F&%

P4

3

' -_:.‘ ~.'-"_¢")$ o .u’ LA

-
Qe e
-~

'.. ’s’! .Z.L";"l: l

B ym e m N,

't.xh ;".{

LY.

manager determines the status of all requested data entities

and generates the session control information. During
updates, the data manager uses this information to perform
transaction verification to insure that only the permitted
modifications have been requested. This session information
is maintained in two tables: session entity table and
session identification table.

Session Entity Table. The session entity table

(Fig. 13) tracks each entity used in a session, its type,
and update status. The session id corresponds to the
associated session identifier. The session identifier
uniquely identifies the entities in a session. The iden-
tifier is used by the data manager to check data entities
back into the database. The status field indicates whether
the entity is in a Read or Write status. Only those

entities in a Write status may be updated during a session.

SESSION_ID NAME TYPE STATUS

Figure 13. Session Entity Table

Session ldentification Table. The session

identification table (Fig. 14) maintains the status of a
session, describes the type of data used in a session, and
identifies the session’s owner and tool being used. This
table supports the data manager update function in verifying
session update requests. It also provides the database

212

W AR AT ST A CRTAINT S CLSTRAEEURTS ...‘

. N - . ”
y MW, 20 O Ve AT,) N
RLADUOED LA D O D0 Mt St L Ut L R M O OO OO L M o A et e i W Vel

-"
: ZEN administrator an easy means to identify session owners.
* ..I' I‘.

. e

? - This benefit of this is the ability to contact a user to

'; check a session file in when another user needs the same

3 data entities for update purposes.

."

\

-

2 PROJECT PARENT_NAME LEVELS PHASE TYPE

I

L 4

)

L)

- SESSION_ID OWNER TOOL

P

. Figure 14. Session Identification Table

NS Common Database

4 §)

N The basic design of the common database is well

documented in Thomas' thesis (16: 84-142). The data manager

- required few extensions to this design. These extensions

: are required to support the varicus tables used and to

; enable entity status tracking.

-

2 Thomas intended for only one database to be used for

¥

9 all three data dictionary phases. However for flexibility,
e, this is no longer the case. A database may now contain one
)

i or more phases. The only requirement is both entity types
' (action and object) used within a phase be present.
‘W The data manager’s support of multiple database

k!

41 - provides the opportunity to split the database across

A A

. - systems. This is important because it provides easier

X
] 2 1 3 '

",v'-rb...P-)) RS A AN Y *"Yﬁ \r‘yN " o A s -

e p o
i AN BB AAGR AR 9:‘0 W nl"to,'q, NGOG !.'or-n,i":,;'h‘h "'.'1-.-.'.\'. v n.‘s.o.n .‘:"‘

a4

Ral ik k. AR,

access for tools and reduces the processing load on the
various systems. This is especially important within the
AFIT environment where the computer systems suffer severe
performance degradation during certain periods of the school

year.

Implementation

The computer resources available within the SEL
dictated the configuration (Fig. 15) used to implement the
data manager, central database, and standard data file. The
data manager was implemented on a VAX 11/785 computer, using
the Berkeley 4.3 Unix operating system. The central
database was developed using the Ingres relational DBMS.

The data manager was developed using the "C" programming
language. The queries were performed using the Embedded
Query Language (EQUEL) provided with Ingres.

To evaluate the data manager and standard data file
implementation, two tools, a data dictionary editor and an
enhanced SADT editor were modified to interface with the
standard data file. Both tools were able to successfully
use the common interface and access the central database.
The most important result of this integration was the ease
in which the tools were modified to support the interface.
The programmers modifying the tools found the standard data
file to support the integration very well and did not
require extensive programming effort to incorporate its use

with their tools.

214

P

LY
s

xf X &

SEL

TOOL

Standard
Data File

DATA
MANAGER

Central

3 Screen

File

USER

Build

Request

Tool Data
Definition
Tables

Session
Tables

/AN

Dictionary

Figure 15.

Overall System Implementation

215

T N 0 P A I R A L N S g

0 TRy
ety N A LA

: ".-'\'-".4‘\;- LRl S .;_‘

- :
2 8 x &4 b %

PIER Y

P
P ol ¢

-

Ve LT,

k(\:ﬂk\

(Y

- -
R N P LA

- o

L

.
K
q
’
"

4

W (TR I T O) WA T A T e ‘ % M O)
e, |‘:"l:'ﬁu'v NP AP OROANE MM ;‘I',“.l'.ft'.,t‘q,{.,l'_a, " ORI A AT AT RS n] l."'t‘.h N ON Tty it b o

Summar

The objective of this research was to implement =a
common database interface which integrated the SEL tools to
form System 690. The key design consideration was for the
interface to support not only the existing tools but also
support the addition of new tools.

The interface was implemented using a standard data
file and a data manager. The key feature of these two
components is their ability to support multiple file
configurations without requiring programming changes to the
tools or the data manager.

The common database interface successfully integrated
all the tools currently within the SEL to form a fully
integrated System 690. The interface easily supported the
integration of the tools without requiring an extensive
coding effort for either the tools or the data manager.

The benefit of this interface is just being seen.
Previously, the difficulty of designing a tool and trying to
develop a database interface was too overwhelming for a
single researcher which has resulted in limited new tool
development. Hopefully researchers, without the burden of
developing a complete database interface for their tools,
will be encouraged to develop new tools and with a higher

degree of sophistication.

216

» '
|‘l..'l"‘ y

Ll B

QTN O U WO
h‘?’."'0‘!‘2‘!%'.'«‘!’: !‘,‘Jv""l !‘:’-‘.‘ho'-\

1) 5 A %)

s

.---—-.,
AN
RN RS

r
AP

’
o

E W

.
1 a

»

-.’n."\f‘-)\ U .“ ;‘

3
, Xy V5
Yol B

LY
LI Y S
P

AR AR

el

Bibliography

1) Barabino, G. P. and others. "A Module for Improving
Data Access and Management in an Integrated CAD Environ-
ment,"” Proceedings of the IEEE Twenty-Second Design Automa-
tion Conference. 577-583. Silver Spring, MD: IEEE Computer
Society Press, 1985.

2) —=——-—- . "A Modular System for Data Management in VLSI
Design," Proceedings of the ACM/IEEE International Con-
ference on Computer Design. 796-801. Silver Spring, MD: IEEE
Computer Society Press, 1984,

3) Fedchak, Elaine. "An Introduction to Software Engineer-
ing Environments," Proceedings of the IEER Tenth Interna-
tional Computer Software and Applications Conference. 456-
463. Washington D.C.: IEEE Computer Society Press, 1986.

4) Foley, Capt Jeffrey W. Design of a Data Dictionary
Editor in a Distributed Software Development Environment.
MS Thesis. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, June 1986 (AD-
A152406).

5) Hartrum, Thomas C. Software Development Documentation
Guidelines and Standards (Draft 3a). School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, September 1986,

6) Hartrum, Thomas C. and Capt Charles W. Hamberger.
"Development of a Distributed Data Dictionary System for
Software Development,” Proceedings of the IEEE 1986 National
Aerospace and Electronics Conference, 3:648-655. New York:
IEEE Press, 1986.

7) Horowitz, Ellis and Ronald Williamson. "SODOS: A
Software Documentation Support Environment: Its Use,"
Proceedings of the IEEE Eighth International Conference on
Software Engineering. 8-14. Silver Spring, MD: IEEE Computer
Society Press, 1985.

8) Hsu, Arding and others. "A Design Environment That
Integrates Tools, Database, and User Interface," Proceedings
of the IEEE International Conference on Computer Design:
VLSI in Computers. 733-736. Silver Spring, MD: IEEE Computer
Society Press, 1984.

9) Johnson, Capt Steven E. A Graphics Editor for Struc-
tured Analysis with a Data Dictionary. MS Thesis. School

o~ : - . -
uj) of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1987.
217
G c.’c.'C" t ’ .’u ¥ ’ 'ﬁ‘.t '! O'N' -' % -' -’ -l‘“w,i‘. W, " \‘} "*\ b)“‘ "” A"‘r’“’ A A

b I K'“ v
AN

i R
S 1.:"\

PETEEEEEY

.
P U M AR

b’
e s N

: ".?:".'a l-u

NNe

- - e
% 7 v
T tal

¥ at

t""' \'

10) EKalay, Yehunda E. "A Database Management Approach to
CAD/CAM Systems Integration,"” Proceedings of the IEEE

Twenty-Second Design Automation Conference. 111-116. Silver
Spring, MD: IEEE Computer Society Press, 1985.

11) Katz, Randy H. "Managing the Chip Desiin Database,"
IEEE Computer, 16: 26-36 (December 1983).

12) £Katz, Randy H. and Tobin J. Lehman "Database Support
for Versions and Alternatives of Large Design Files," I1IERE

Transactions on Software Engineering, 10: 191-200 (March
1984).

13) Pressman, Roger S. Software Engineering: A Prac-
titioner’'s Approach (Second Edition). New York: McGraw-Hill
Book Company, 1987.

14) Purtilo, James. "Polylith: An Environment to Support
Management of Tool Interfaces," Papers of ACM SIGPLAN 85

Symposium. 12-18. New York: Association of Computing
Machinery, 1985.

15) 8Stucki, Leon G. "What About CAD/CAM for Software? The
ARGUS Concept,” Proceedings of the IEEE Conference on
Software Development Tools, Techniques, and Alternatives.

129-135. Silver Spring, MD: IEEE Computer Society Press,
1983.

16) Thomas, Capt Charles W. An Automated/Interactive
Software Engineering Tool to Generate Data Dictionaries. MS
Thesis. School of Engineering, Air Force Institute of

Technology (AU), Wright-Patterson AFB OH, December 1984 (AD-
Al152215).

17) Urscheler, Capt James. An Interactive Graphics Editor
for SADT Diagrams. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1986 (AD-A177663).

218

' T
'S : l,) ‘0‘."‘.‘0 W !‘D f .'! h “-‘ 4 "p o ' .'A...l‘. ‘.'."

R

=

Ay

3

I'l II
Sl

v

- g o

- P
..)i’}l o

Py -."X.

T @

R)

LAY

’
o N

.."‘

N 0 AT AT A AN AONON T y en 1 0 NSORT ToATIRRON T e N R e R
Favarals fadad e B e NN O AR AR I o T it it it et Sttt

"'y
L

VITA

Captain Ted D. Connally was born on 4 August 1958 in
Stamford, Texas. He graduated from Stamford High School in
1976 and attended Texas A&M University, from which he

received the degree of Bachelor of Science in Computer

Science in May 1980. Upon graduation, he received a

commission in the USAF through the ROTC program. He entered
active duty in June 1980 at Randolph AFB, Texas where he

served as Programming Team Chief, 3302nd Computer Services

Squadron until July 1984. He then served as Chief, Informa-

tion Systems Branch, Air Force Coordinating Office for
Logistics Research, Wright-Patterson AFB, Ohio, until
entering the School of Engineering, Air Force Institute of

Technology in May 1986.

Permanent Address: 603 Dodson Drive

Stamford, Texas 79553

219

1)
S '3’-".‘.‘!‘;'1‘.1".

RIS WA

e

o
o
?‘\-_
NN,

»

o

w W
LHAY

RGN
Cpe

_,.'»

-F\

AN
S

~

~

N \
LM T U U

L L o L
o " AT
) - RGNy
» bk LS
: 5‘5“5-.:: ANV
.“tk'w"..."b l‘:“': Ak ': AN ':‘.'....! X)

\!' 3 .\l--_.wrktl.-[g IV.'--'JJ.I"A \u-\ -.-n.o--'-- S A d») |-v.a.d:.blv ‘
S T | XRNH SR RFAIIA: () 73T

